Interfacial rheology of lung surfactant: experiments & modelling to explore disruption of breathing by aerosolised compounds

NATIONAL RESEARCH CENTRE FOR THE WORKING ENVIRONMENT

<u>Hugh Barlow</u>, Sreyoshee Sengupta, Maria Terese Baltazar, Jorid Sørli

AERC 2024

2

Contents

- Context: Assuring inhalation Safety
- Lung Surfactant Rheology
- Experimental Setup Constrained Droplet Surfactometer
- Experimental Results
- Modelling/Theory
- Conclusions & Future Work

Context:

Assuring safety of consumer products

Assuring inhalation safety: Inhalation exposure depends on product type and habits & practices

Several consumer goods products can lead to an unintentional inhalation exposure : Can we safely use x% of ingredient y in product z?

Hairsprays (pump and aerosol)

Anti-perspirant/ deodorant aerosols

Shampoos

Household cleaning products

Need for robust safety assessment of ingredients in consumer products

5

Assuring inhalation safety without animal testing

'Traditional' Risk Assessment

Historically risk assessment of ingredients (xenobiotic) in aerosols and sprays formulations relied on animal tests **in rats exposed to aerosols** for 28 or 90days, 6h/day

Philips et al. Journ. Vis. Experiments 2017

'Next Generation' Risk Assessment

based on advances in <u>human</u> biology and in vitro/computational modelling

SEAC Inhalation Safety Science

6

Example from other industry sector; Consumer harm from lung surfactant inhibition

Aerosols of alkylsiloxane polymers produced by US tile coating company used in waterproofing were recalled from sale after they caused hospitalisation.

Injury was shown to be caused by interactions between polymer and lung surfactant

Testing strategy needs to be developed to understand and protect consumers in case of adverse interactions between novel products and lung surfactant

Eric Lipton, New York Times, 2007

Duch et al, Clin. Tox. 2014

Lung Surfactant

Respiratory System Rheology

Respiratory System Rheology

10

Lung Surfactant

- ~80-90% Phospholipids
- ~10% Surfactant Proteins
- Surfactant monolayers form at air/liquid Interface within alveoli
- Laplace Pressure

(11)

Lung Surfactant

~80-90% Phospholipids

~10% Surfactant Proteins

Surfactant monolayers form at air/liquid Interface within alveoli

Laplace Pressure

$$\Delta p = \frac{2\gamma}{R}$$

Dziura et al. Symmetry 2021

During Breathing the alveoli expand and contract over time

$$\frac{\partial \Delta p}{\partial R} = -\frac{2\gamma}{R^2} + \frac{2}{R}\frac{\partial \gamma}{\partial R} = \frac{2}{R}\left(-\gamma + \frac{\partial \gamma}{\partial \ln A}\right)$$

$$\gamma = \gamma_0 - \Pi$$

E = $-\frac{\partial \Pi}{\partial \ln A}$ where the dilational elasticity of the lung surfactant

(12)

Surfactant Dilational Rheology

Surface Pressure $\Pi(\Gamma)$

Surface Concentration Γ

As surface expands and contracts molecules migrate between bulk and surface

dataphysics-instruments.com

Surfactant Dilational Rheology

Surface Pressure $\Pi(\Gamma)$

Surface Concentration Γ

As surface expands and contracts molecules migrate between bulk and surface

Surfactant Proteins modify the process by forming subsurface structures

Increases the rate at which the surfactants re-adsorb during inhalation

dataphysics-instruments.com

Blanco & Perez-Gil, European Journal of Pharmacology 568 (2007)

(14)

Experiments

17

Experiments

Solution of model lung surfactant (Curosurf®) prepared at fixed concentration

Droplet size is cycled at fixed rate with 20% amplitude

18

Experiments

Solution of model lung surfactant (Curosurf®) prepared at fixed concentration

Droplet size is cycled at fixed rate with 20% amplitude

Images of droplet are processed To measure surface tension

19

Experiments

$$E^* = E' + iE'' = \frac{\mathfrak{F}(\gamma)}{\mathfrak{F}(\ln A/A_0)}$$

Solid Line $\gamma^2 - 2E' \ln A/A_0 \gamma + \ln A/A_0^2 (E'^2 + E''^2) = E''^2 \ln A_{max}/A_0^2$

Experiments - Base Rheology

Storage and loss moduli show reasonable agreement with literature values within range of typical human breathing frequencies

Wuestnec et al. Adv. Coll. & Surf.2005)

Experiments - (Alkylsiloxane Polymer)

- 1. Base Response established before infusion
- 2. Infusion begins at 40s
- 3. New response appears after short time

Experiments - (Alkylsiloxane Polymer)

- 1. Base Response established before aerosol infusion
- 2. Infusion begins at 40s
- 3. New response appears after short time

SEAC | Unilever

Experiments - (Alkylsiloxane Polymer)

Lissajous curves show significant decreases in elasticity following introduction of xenobiotic

Despite continuous infusion, new steady response is observed

Experiments - (Alkylsiloxane Polymer)

Lissajous curves show significant decreases in elasticity following introduction of xenobiotic

Despite continuous infusion, new steady response is observed

Now to study other compounds

25

Experiments

Sodium Dodecyl Sulfate (SDS)

$$H_3C \left[- \right]_{10} 0^{-} 0^{-} Na^{-1}$$

Description: Anionic Surfactant

Toxicology: Known irritant but acceptable for use below known effect levels

Commercial use: Cleaning Products

Polyhexanide (PHMB)

Description: Amphiphilic Polymer

Toxicology: Not suitable for aerosol use

Commercial use: Disinfectant

26

Experiments

Quantifying change in rheology

$$E^*| = \sqrt{E'^2 + E''^2}$$

$$\Delta \tilde{E} = \frac{|E_{post}^*| - |E_{pre}^*|}{|E_{pre}^*|}$$

Different concentrations and Infusion rates confirm dose rate hypothesis

Polyhexanide

27

Experiments

In both cases we see reasonable Curve collapse

Dose Rate=Concentration Infusion Rate

28

Experiments

In both cases we see reasonable Curve collapse

Dose Rate=Concentration ×Infusion Rate

"This suggests that the *dose rate* rather than the *total inhaled dose* of substance is critical for the toxic effect." Duch et al. Clin. Toxicol. 2014

Effect also seen in vivo suggests that In vitro method is capturing key factors for predicting human safety

Unilever

29

Experiments

In both cases we see reasonable Curve collapse

Dose Rate=Concentration ×Infusion Rate

"This suggests that the *dose rate* rather than the *total inhaled dose* of substance is critical for the toxic effect." Duch et al. Clin. Toxicol. 2014

Effect also seen in vivo suggests that In vitro method is capturing key factors for predicting human safety

Can we now understand this in terms of surfactant physics?

Modelling

31

Modelling Lung Surfactant

Several models have been developed To simulate the dynamics of lung surfactant

Models tend to be quite complex to account for different regimes/pressures with many fitting parameters

Our goal here is to construct a minimal model that can be used to understand how aerosolised compounds are interfering with lung surfactant function.

Bouchoris & Bontozoglou C&S:A. 2021

Modelling - Volmer isotherm

Assume that lung surfactant on surface behaves as a two dimensional gas with surface concentration Γ and migrates between bulk and surface continuously

Surface Tension $\gamma = \gamma_0 - k_B T \Pi(\Gamma)$ Surface Pressure $\Pi(\Gamma) = m \frac{\Gamma_{\infty} \Gamma}{\Gamma_{\infty} - \Gamma}$ Total Surfactant Flux $Q = \frac{d(\Gamma A)}{dt}$

Rate of change surfactant concentration

Maximum Concentration $\Gamma_{\infty} = 50 \text{ Å}^{-2}$

$$\frac{d\Gamma}{dt} = k_a C(\Gamma_{\infty} - \Gamma) - k_d \Gamma e^{\frac{\xi(\Gamma)}{k_B T}} - \frac{\Gamma}{A} \frac{dA}{dt}$$

Non-local Interactions

$$\xi(\Gamma) = k_B T \frac{m\Gamma}{\Gamma_{\infty} - \Gamma}$$

Rate constants k_a, k_d

Empirical Scaling Parameter m

Kralchevsky et al. Handbook of Surfactant Science 2008

33

Model - Base Rheology

Model parameters are fit to Lissajous curve for single frequency

Model fails to capture both elastic and viscous behaviour exactly but does capture salient features of unexposed lung surfactant viscoelasticity

Model – Xenobiotic Effects

Assume that the aerosolised compound is introduced at fixed rate $\dot{\Gamma}_{x}$

Desorption rate of compound $k_{x,d}$

Non-local Interaction xenobiotic parameter β_{χ}

 $\dot{\Gamma}_x = \alpha \times \text{Dose Rate}$

These three parameters are used to fit our model for each chemical studied

$$\Pi(\Gamma, \Gamma_{x}) = m \frac{\Gamma + \Gamma_{x}}{\Gamma_{\infty} - \Gamma - \Gamma_{x}} + \frac{\beta_{x}}{k_{B} T} (\Gamma_{x} / \Gamma_{\infty})^{2}$$

 $\gamma = \gamma_0 - k_B T \Gamma_{\infty} \Pi(\Gamma, \Gamma_x)$

$$\frac{d\Gamma}{dt} = k_a C(\Gamma_{\infty} - \Gamma - \Gamma_{\chi}) - k_d \Gamma e^{\frac{\xi(\Gamma, \Gamma_{\chi})}{k_B T}} - \frac{\Gamma}{A} \frac{dA}{dt}$$

$$\frac{d\Gamma_x}{dt} = \dot{\Gamma}_x - k_{x,d} \Gamma_x e^{\frac{\xi(\Gamma,\Gamma_x)}{k_B T}} - \frac{\Gamma_x}{A} \frac{dA}{dt}$$

$$\xi(\Gamma,\Gamma_{\chi}) = k_B Tm \frac{\Gamma + \Gamma_{\chi}}{\Gamma_{\infty} - \Gamma - \Gamma_{\chi}} + \beta_{\chi} \Gamma_{\chi} / \Gamma_{\infty}$$

35

Modelling – Xenobiotic Effects

Model Accurately reproduces observed change in Lissajous curves with increasing dose rate

Data

102

100

101

Dose Rate (mg/min)

36

Polyhexane 1. --- Model Fit 0.8 Model Accurately reproduces observed change in Lissajous curves 0.6 ΔĒ with increasing dose rate ΔĒ 0.4 0.2 100 101 Dose Rate (mg/min) Model also reproduces observed change in SDS dilational modulus for both Polyhexane and SDS 1.0 --- Model Fit Data 0.8 0.6 ΔĒ 0.4 0.2

Modelling – Xenobiotic Effects

37

Modelling – Xenobiotic Effects

Model can be successfully fit to observed change in rheology across all chemicals studied

Measured relative potencies of each chemical encouragingly agree with literature

Suggests that the mechanism for inhibition is generic and well captured by model

(Larsen et al. B&C P&T 2012)

Conclusions

- Inhibition of function of lung surfactant function demonstrated to be linked to compound altering dilational rheology
- In vitro study reproduces dose rate dependence/potencies seen in literature
- Modelling successfully fits all data from experiments suggesting mechanism is generic
- Results of this study act as a very encouraging example of how in vitro experiments and modelling can be used for assuring safety without animal testing

Future Work

- What determines the relative potency of each chemical?
- Extend the modelling to include effects of multilayer structures

39

Acknowledgements

Thank you & Questions?

