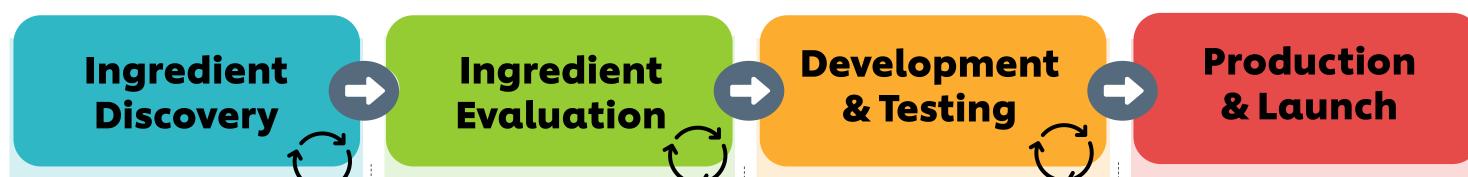
SEAC Unilever

SUSTAINABLE PRODUCT INNOVATIONS FOR FAST-MOVING CONSUMER GOODS

Learning from companies' experiences for a more effective and accessible 'Safe and Sustainable by Design' framework

Florence Bohnes*, Ian Malcomber, Sarah Sim, David Mason, Gordon Riley, Clare Rodseth, Evita Vandenbossche-Goddard


Unilever R&D, Safety and Environmental Assurance Centre, Sharnbrook, United Kingdom; *Corresponding author Florence.Bohnes@unilever.com

INTRODUCTION

Advanced materials (including complex chemicals) represent a major opportunity for **disruptive innovation**, unlocking novel benefits for consumers.

It is essential to ensure that new products and innovations using these materials are **safe and sustainable by design.**

UNILEVER APPROACH TO SAFE AND SUSTAINABLE INNOVATION

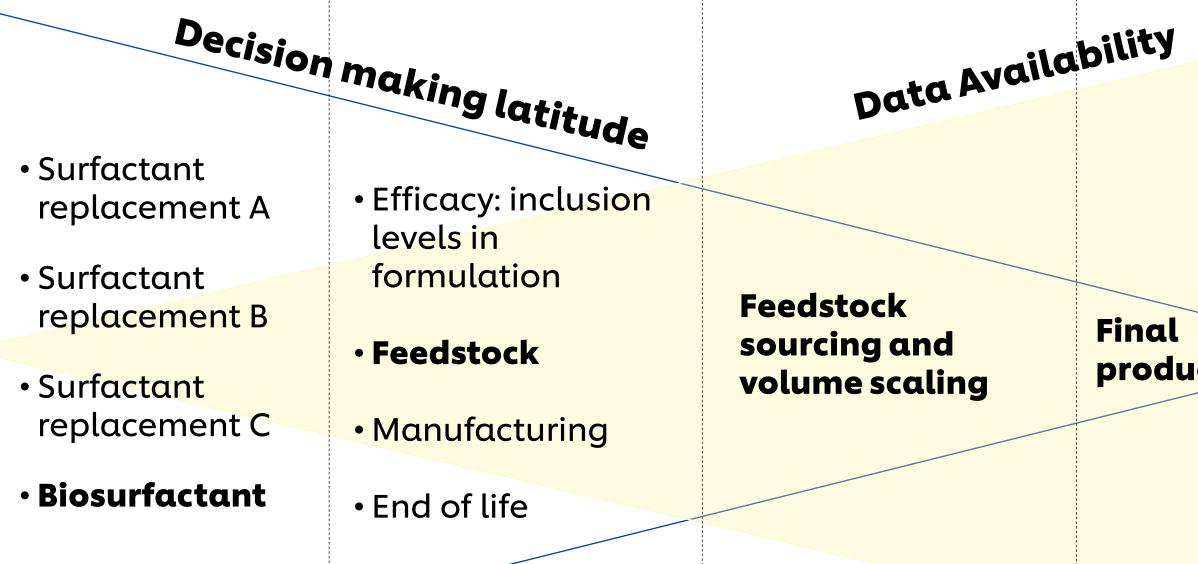
Link to full report

The European Commission Joint Research Centre (EC JRC) introduced its Safe and Sustainable by Design (SSbD) framework in 2022 to support product development.

As a global fast-moving consumer goods company, marketing many of the world's largest brands, **Unilever's innovation** process already integrates safety and sustainability priorities.

We offer a downstream user (of new materials) perspective and our experience in designing safe and sustainable products decades, providing many over **recommendations** for an evolution of the EC JRC SSbD framework.

Our **case study** used to derive these focuses recommendations on α biosurfactant used in Home Care products.


AIMS & OBJECTIVES OF CASE STUDY

	$\sim \epsilon$	~~	~ 8	
Consumer Safety Assessment	Identification of key health effects through in silico approaches and/or available data to guide tech optimisation	Determine consumer exposure scenarios for proposed product type(s); conduct in vitro screening to reduce uncertainty for key health effects	Implement safety testing strategy; generate data for exposure-led key health effects	Final safety assessment for the marketed product type and commercial material specification
Occupational Safety Assessment	Evaluate major hazards / potential risks to help prioritise technology options	Characterise highest risks and conduct screening assessments for lead manufacturing routes	More detailed hazard assessments on lead manufacturing routes to enable scale up	Final risk assessments for processes manufacturing or using the new technology
Environmental Safety Assessment	Estimate environmental safety profile (fate & effects) through available data or read-across	Generate/source from supplier fate (ready biodegradation & log K _{IAM} for bioaccumulation) & effects (Daphnia, algae & NAMs for fish) data	Safety risk assessments conducted for expected market volumes and countries	-
Environmental Sustainability Assessment	Eco-design approaches to help narrow technology options	Screening assessment on limited impact categories to identify any potential gross negatives	Assess implications of technology options: i.e. volume scaling. Bespoke assessments such as LUCI-LCA	Full LCA/PEF compliant assessment, single environmental indicator footprint / material analysis (optional)

Outline Unilever's current approach to safety and sustainability during

innovation

framework

Provide reflections on the SSbD framework proposed by the EC JRC

Offer recommendations for further

development of the JRC SSbD



Sunlight

Illustrative example of decision pathway for Environmental Sustainability Assessment

KEY AREAS FOR IMPROVEMENT

Enabling Environment

Sustainable product innovation can only be truly embedded in company operations if an **enabling environment** is offered both by the **external policy context** and individual business strategies.

Scoring approaches

An aggregated score across all aspects of

Use of NAMs

We strongly support the use of **non-animal** New Approach Methodologies (or NAMs) in safety and believe that the SSbD framework should not drive new animal testing.

Staged assessments

The current framework is structured around the safety and sustainability steps. Alignment to **innovation stages**, with methods and approaches adapted to information / data available at each enable better decisionstage, would making.

RECOMMENDATIONS

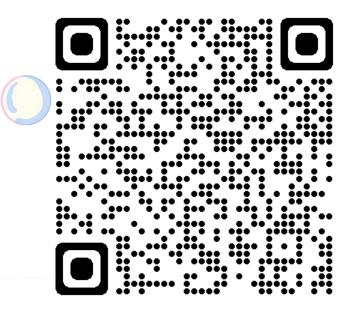
- **Reconsider the conceptual framing**, moving away from absolute assessment.
- Ensure alignment to the existing stage gate innovation process.
- Account for data availability and methodological feasibility at each stage.
- Develop approach for dealing with trade-offs that encourages adoption within industry.

safety and sustainability removes the potential to assess the acceptability of inevitable trade-offs. Scoring aligned to the needs of Digital Product Passports / Ecolabelling should be considered.

Trade-offs

Unilever

おり


Expecting new chemicals to demonstrate improved profiles against all hazard endpoints and all sustainability impact categories may slow the **transition** towards safe and more sustainable Trade-offs chemicals. should be considered when **safety can be managed** through product design, production and well-defined use, enabling delivery of substantial sustainability benefits.

Absolute assessments

Absolute safety, defined by hazard alone, and **absolute** sustainability, referring to one identified use, is **not** achievable in the short term and may not be desirable. New chemicals should not be discarded if hazards can be managed through welldefined exposure.

- **Develop the framework** for integrating new science as it develops.
- Support sector-based initiatives to generate and share data, methodologies and approaches focusing on:

• Tier 1 pre-assessment / early-stage screening (e.g. rule-bases, question-sets etc.).

