

In Silico Approaches to Link Adverse Outcomes to Molecular Initiating Events through AOPs

AJ Wedlake, AM Middleton, MN Grayson, E Gelžinytė, M Folia, P Piechota, C Gong, JM Goodman, S Gutsell, P Kukic, PJ Russell

WC11 – 26th August 2021

Mechanistic Toxicity Predictions

Other Computational Methods

Towards a Quantitative AOP

Mechanistic Toxicity Predictions

Adverse Outcome Pathway

Adverse Outcome Pathway

Ankley, G.T., et al. (2010) Environ. Toxicol. Chem., 29; 730.

MRC | Medical Research Council

Toxicology Unit

MRC

Adverse Outcome Pathway

Toxicology Unit

MRC

Structural Alerts

Allen, T.E.H. *et al.* (2018) *Toxicol. Sci.*, 165; 213. Wedlake, A.J. *et al.* (2019) *Chem. Res. Toxicol.*, 33; 388.

Random Forest

Wedlake, A.J. et al. (2019) Chem. Res. Toxicol., 33; 388.

Neural Network

Model Performance

		Held Out Test Data					
		SE	SP	ACC	MCC		
Structural Alerts	Average	84.1	93.5	91.1	0.790		
	SD	11.6	4.6	4.2	0.096		
Random Forests	Average	89.0	90.4	92.2	0.815		
	SD	11.6	8.1	4.0	0.091		
Neural Networks	Average	87.8	93.6	92.8	0.832		
	SD	10.4	5.9	4.0	0.089		

SE = sensitivity (percentage active chemicals correctly assigned)

SP = specificity (percentage negative chemicals correctly assigned)

ACC = overall quality (percentage of chemicals correctly assigned)

MCC = Matthews correlation coefficient (score from -1 to 1 with a higher score indicating a better model.

scores account for imbalance in dataset)

Wedlake, A.J. *et al.* (**2019**) *Chem. Res. Toxicol.*, 33; 388. Allen, T.E.H. *et al.* (**2020**) *Chem. Sci.*, 11; 7335.

Consensus Modelling

Cite This: Chem. Res. Toxicol. 2020, 33, 388–401

Article

pubs.acs.org/crt

Structural Alerts and Random Forest Models in a Consensus Approach for Receptor Binding Molecular Initiating Events

Andrew J. Wedlake,[†][©] Maria Folia,[‡] Sam Piechota,[‡] Timothy E. H. Allen,^{†,§}[©] Jonathan M. Goodman,^{*,†}[©] Steve Gutsell,[‡] and Paul J. Russell[‡]

[†]Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

[‡]Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, United Kingdom

[§]MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE19HN, United Kingdom

Supporting Information

ABSTRACT: A molecular initiating event (MIE) is the gateway to an adverse outcome pathway (AOP), a sequence of events ending in an adverse effect. In silico predictions of MIEs are a vital tool in a modern, mechanism-focused approach to chemical risk assessment. For 90 biological targets representing important human MIEs, structural alert-based models have been constructed with an automated procedure that uses Bayesian statistics to iteratively select substructures. These models give impressive average performance statistics (an average of 92% correct predictions across targets), significantly improving on previous models. Random Forest models have been constructed from physicochemical features for the same targets, giving similarly impressive performance statistics (93% correct predictions). A key difference between

Wedlake, A.J., et al. (2020) Chem. Res. Toxicol., 33; 388.

Consensus approach; Increased confidence

Method	SE	SP	ACC	МСС	% Unassigned
Majority Vote	90.7	90.5	92.3	0.827	
ΔSΑ	4.1	-0.4	2.1	0.045	
ΔRF	-0.8	3.7	1.0	0.023	
ΔΝΝ	0.4	0.4	0.4	0.009	
Unanimous	92.8	93.8	94.9	0.882	9.6
ΔSΑ	6.2	2.9	4.7	0.100	
ΔRF	1.3	7.0	3.6	0.078	
ΔΝΝ	2.5	3.7	3.0	0.064	

Wedlake, A.J. *et al.* (**2019**) *Chem. Res. Toxicol.*, 33; 388. Allen, T.E.H. *et al.* (**2020**) *Chem. Sci.*, 11; 7335.

- MIEs make great targets for *in silico* toxicity predictions based on chemistry
- Structural alerts, random forests and neural networks have all been developed to make these predictions

• Using these algorithms together increases their performance and the confidence we can have in their predictions

Other Computational Methods

DFT for Mutagenicity

Allen, T. E. H. *et al.* (**2018**) *J. Chem. Inf. Mod.*, 58; 1266. DFT - Optimization: B3LYP, 6-31+G(d), iefpcm; SPE: M062X, def2tzvpp, iefpcm

DFT for Mutagenicity

Allen, T. E. H. *et al.* (**2018**) *J. Chem. Inf. Mod.*, 58; 1266. DFT - Optimization: B3LYP, 6-31+G(d), iefpcm; SPE: M062X, def2tzvpp, iefpcm

Allen, T. E. H. *et al.* (2020) *Chem. Res. Toxicol.*, 33; 324. Bledsoe, R. K. *et al.* (2002) *Cell*, 110; 93.

3DQSAR Studies

Allen, T. E. H. et al. (2020) Chem. Res. Toxicol., 33; 324.

...OH

Target Chemical

Predicted pIC50 = 8.46

Experimental pIC50 = 8.70

Developmental effects?

Experimental pIC50 = 8.53

Dexamethasone

Ĥ

HO

С

F

Developmental effects

• DFT calculations provide a window into the molecular interactions driving some Ames positive results

 CoMFA 3D QSAR calculations can provide analogous image of receptor binding interactions

 Both of these approaches increase understanding in how and why specific molecules activate MIEs

MRC Unit

Bayesian Neural Networks

Quantitative Neural Network?

MRC

Toxicology

Unit

MRC

Conventional Learning

Bayesian Learning

	Train MAE	Valid. MAE	Test MAE	Ext. Val. MAE
AVERAGE	0.487	0.613	0.621	0.943
SD	0.030	0.051	0.051	0.223
	Train R ²	Valid. R ²	Test R ²	Ext. Val. R ²
AVERAGE	0.743	0.586	0.572	0.128
SD	0.067	0.089	0.094	0.437

MAE = Mean Absolute ErrorSD = Standard Deviation $R^2 = Coefficient of Determination for Linear Correlation$

Some Models (Test Set)

Some Models (Ext. Valid. Set)

Toxicology MRC Unit

Medical Research Council MRC |

Calibration of Uncertainties

Distribution of Uncertainties

Predictions with Uncertainties

Experimental Activity

 Bayesian learning regression neural networks provide the ability to both make quantitative predictions and understand the uncertainty in those predictions

• These algorithms have been shown to be useful in the prediction of molecular activity at human MIEs

MRC

MRC Toxicology Unit

Nyffeler Phenotypic Profiling Study

Toxicology and Applied Pharmacology 389 (2020) 114876

Bioactivity screening of environmental chemicals using imaging-based highthroughput phenotypic profiling

Johanna Nyffeler^{a,b}, Clinton Willis^{a,c}, Ryan Lougee^{a,b}, Ann Richard^a, Katie Paul-Friedman^a, Joshua A. Harrill^{a,*}

^a Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America

^b Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37831, United States of America

^c Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN 37831, United States of America

🖌 Original Research

Comparison of Approaches for Determining Bioactivity Hits from High-Dimensional Profiling Data

Johanna Nyffeler^{1,2}, Derik E. Haggard^{1,2}, Clinton Willis^{1,3}, R. Woodrow Setzer¹, Richard Judson¹, Katie Paul-Friedman¹, Logan J. Everett¹, and Joshua A. Harrill¹

Nyffeler, J., et al. (2020) Toxicol. Appl. Pharmacol., 389; 114876. Nyffeler, J., et al. (2021) SLAS Discov., 26; 292.

MRC | Medical Research Council

C Toxicology Unit

> SLAS Discovery 2021, Vol. 26(2) 292–308 © 2020 Society for Laboratory Automation and Screening DOI: 10.1177/247255220950245 journals.sagepub.com/home/jbx SAGE

Overall Procedure

MRC Toxicology Unit

Nyffeler, J., et al. (2020) Toxicol. Appl. Pharmacol., 389; 114876.

Data Processing

Nyffeler, J., et al. (2021) SLAS Discov., 26; 292.

BMC Data Distribution

MRC Toxicology Unit

Column	Category	% Positive	Column	Category	% Positive
1	AGP_Axial_Cells	35.9	26	ER_Profile_Cytoplasm	35.5
2	AGP_Compactness_Cells	30.7	27	ER_Radial_Cells	38.1
3	AGP_Intensity_Cytoplasm	33.6	28	ER_Symmetry_Cells	29.6
4	AGP_Intensity_Membrane	17.6	29	ER_Texture_Cytoplasm	38.0
5	AGP_Intensity_Ring	31.3	30	ER_Texture_Ring	36.3
6	AGP_Profile_Cytoplasm	30.9	31	Mito_Axial_Cells	33.5
7	AGP_Profile_Nuclei	26.3	32	Mito_Compactness_Cells	44.3
8	AGP_Radial_Cells	34.9	33	Mito_Intensity_Cytoplasm	37.7
9	AGP_Symmetry_Cells	23.5	34	Mito_Intensity_Ring	42.5
10	AGP_Texture_Cytoplasm	31.2	35	Mito_Profile_Cytoplasm	37.8
11	AGP_Texture_Membrane	20.1	36	Mito_Profile_Nuclei	15.5
12	AGP_Texture_Ring	32.8	37	Mito_Radial_Cells	42.5
13	DNA_Axial_Nuclei	40.1	38	Mito_Symmetry_Cells	32.9
14	DNA_Compactness_Nuclei	43.0	39	Mito_Texture_Cytoplasm	42.6
15	DNA_Intensity_Nuclei	24.8	40	Mito_Texture_Ring	44.8
16	DNA_Profile_Cytoplasm	40.7	41	Position	34.7
17	DNA_Profile_Nuclei	39.3	42	RNA_Axial_Nuclei	32.7
18	DNA_Radial_Cells	44.6	43	RNA_Compactness_Nuclei	33.7
19	DNA_Radial_Nuclei	39.2	44	RNA_Intensity_Nuclei	7.4
20	DNA_Symmetry_Nuclei	35.7	45	RNA_Profile_Nuclei	31.2
21	DNA_Texture_Nuclei	43.0	46	RNA_Radial_Nuclei	40.7
22	ER_Axial_Cells	32.2	47	RNA_Symmetry_Nuclei	28.4
23	ER_Compactness_Cells	41.0	48	RNA_Texture_Nuclei	26.5
24	ER_Intensity_Cytoplasm	30.8	49	Shape	42.5
25	ER_Intensity_Ring	29.6			UNIVERSIT

CAMBRIDGE

 NN and RF models were trained using three molecular representations (ECFP, MACCS keys and PhysChem descriptors). Results are shown below:

Model		Validation Set				Test Set			
	Architecture	SE	SP	ACC	МСС	SE	SP	ACC	МСС
NN-ECFP	100100	26.5	91.9	67.4	0.249	30.0	91.0	66.9	0.272
RF-ECFP	100	97.7	11.0	43.5	0.158	94.8	12.9	45.3	0.127
NN-MACCS	100100	49.8	87.4	73.3	0.408	50.4	78.0	67.1	0.295
RF-MACCS	10	95.9	19.3	48.0	0.214	93.1	17.3	47.3	0.150
NN-PhysChem	100	40.3	84.6	68.0	0.279	38.3	84.8	66.3	0.262
RF-PhysChem	10	92.6	20.8	47.6	0.177	90.8	18.6	47.2	0.129

 Further exploration of biological responses through AOPs remains a challenge qualitatively and quantitatively

- Data availability makes this a challenge for *in silico* modelling
- Computational prediction of phenotypic cellular responses may be able to feed into a weight of evidence response

Ab Initio NGRA Framework

Mechanistic understanding

Uncertainty

Baltazar, M.T., et al. (2020) Toxicol. Sci., 176; 236.

MRC | Medical Research Council

Toxicology

Unit

MRC

Acknowledgements

- Professor Jonathan Goodman
- Professor Anne Willis
- Unilever
- Dr Paul Russell, Dr Steve Gutsell, Dr Predrag Kukic & colleagues at SEAC, Unilever
- Dr Andrew Wedlake
- Dr Alistair Middleton & Dr Maria Baltazar
- The Centre for Molecular Informatics
- The MRC Toxicology Unit
- St. John's College

MR

Unit

Toxicology

- Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment. Allen, T.E.H.; Goodman, J.M.; Gutsell, S.; Russell, P.J. *Chem. Res. Toxicol.* **2014**, 27 (12), 2100-2112. DOI: 10.1021/tx500345j
- Using Transition State Modeling to Predict Mutagenicity for Michael Acceptors. Allen, T.E.H.; Grayson, M.N.; Goodman, J.M.; Gutsell, S.; Russell, P.J. J. Chem. Inf. Model. 2018, 58 (6), pp 1266-1271. DOI: 10.1021/acs.jcim.8b00130
- Using 2D Structural Alerts to Define Chemical Categories for Molecular Initiating Events. Allen, T.E.H.; Goodman, J.M.; Gutsell, S.; Russell, P.J. *Toxicol. Sci.* 2018, 165 (1), 213-223. DOI: 10.1093/toxsci/kfy144
- Quantitative Predictions for Molecular Initiating Events using 3D Quantitative Structure-Activity Relationships. Allen, T.E.H.; Goodman, J.M.; Gutsell, S.; Russell, P.J. Chem. Res. Toxicol. 2020, 33(2), pp 324-332. DOI: 10.1021/acs.chemrestox.9b00136
- Structural Alerts and Random Forest Models in a Consensus Approach for Receptor Binding Molecular Initiating Events. Wedlake, A.J., Folia, M., Piechota, S., Allen, T.E.H.; Goodman, J.M.; Gutsell, S.; Russell, P.J. *Chem. Res. Toxicol.* **2020**, 33(2), 388-401. DOI: 10.1021/acs.chemrestox.9b00325
- Neural Network Activation Similarity: A New Measure to Assist Decision Making in Chemical Toxicology. Allen, T.E.H.; Wedlake, A.J.; Gelžinytė, E.; Gong, C.; Goodman, J.M.; Gutsell, S.; Russell, P.J. *Chem. Sci.* 2020, 11, 7335-7348. DOI: 10.1039/d0sc01637c
- Confidence in Inactive and Active Predictions from Structural Alerts. Wedlake, A.J.; Allen, T.E.H.; Goodman, J.M.; Kukic, P.; Gutsell, S.; Russell, P.J. Chem. Res. Toxicol. 2020, 33(12), 3010-3022. DOI: 10.1021/acs.chemrestox.0c00332

In Silico Approaches to Link Adverse Outcomes to Molecular Initiating Events through AOPs

AJ Wedlake, AM Middleton, MN Grayson, E Gelžinytė, M Folia, P Piechota, C Gong, JM Goodman, S Gutsell, P Kukic, PJ Russell

WC11 – 26th August 2021

