OCCUPATIONAL NEXT GENERATION RISK ASSESSMENT (NGRA) ON AN EXCLUSIVE USE COSMETIC INGREDIENT FOR EU REACH: A CASE STUDY ON C12-15 ALKYL BENZOATE

James Dawick

12th World Congress on Alternatives and Animal Use in the Life Sciences Session 410 NAMs in Practice: Fit-for-Purpose NGRA Across Sectors

Animal Testing Conundrum: EU REACH and Cosmetics

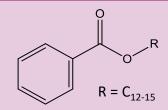
EU CPR (EC) 1223/2009

Total ban on animal testing for cosmetic products and ingredients since 11 March 2013

EU REACH (EC) 1272/2008

Animal testing necessary to assess risks from occupational exposure, non-cosmetic use(s) and environmental safety

Cosmetic Raw **Material** Cosmetic and **Env Safety Exclusive** non-Cosmetic Assessment **Cosmetic Use** Use **Animal Testing** Significant Required **Professional &** Occupational Consumer Exposure Exposure Yes No **Animal Testina Animal Testing Animal Testing for** Adaptation **Worker Safety Not Permitted** Possible??



Article 13

innospec >>

C12-15 Alkyl Benzoate Use and History

- Invented by Innospec
- Reaction product of C12-15 alcohols and benzoic acid
- Non-volatile hydrophobic liquid UVCB
- Primary function: Emollient in skincare products
- Used extensively in APDO, lotions and moisturisers and as solubilizer/dispersant for sunscreen actives
- Long-standing safely profile in cosmetics for many years
- Extensive global use
- EU REACH registered in 2010 Annex X (M/I>1000 tpa)

Benzoic acid, C12-15-alkyl esters INCI: C12-15 Alkyl Benzoate

CAS: 68411-27-8 **EC**: 270-112-4

Substance property	Value
Appearance/state	Clear Liquid
Molecular weight	290 – 332 g/mol
Boiling Point	374°C
Melting point	-16.2 °C
Vapour pressure	<<0.1 Pa
Log Kow	8.0-9.6
Water solubility	≤ 2.47 µg/L

ECHA Compliance Check

- Rejected read-across approach
- Historical studies not conforming to latest guidance/methods
- Higher tier tox study waivers rejected
- Animal studies essential to ensure worker protection

Source
$$R = C_{9}$$
Target

- Innospec committed to no further animal testing
- Initial attempts to strengthen read-across rejected
- Alternative Occupational NGRA strategy developed and shared with co-registrants
 - Rejected and decided to proceed with animal testing
- Innospec dropped lead-registrant role and resigned from consortium
 -which enabled us to "opt-out" of animal testing according to Articles 11(3)c and 19(2)c of EU REACH

CONFIDENTIAL 1 (36)

Helsinki, 9 November 2017

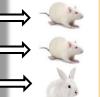
Addressee: Innospec Limited Innospec Manufacturing Park CH65 4EY, Ellesmere Port

United Kingdom

Decision number: CCH-D-2114375450-52-01/F Substance name: BENZOIC ACID, C12-15-ALKYL ESTERS

EC number: 270-112-4

CAS number: 68411-27-8


Registration number: 01-2119825559-27-0001

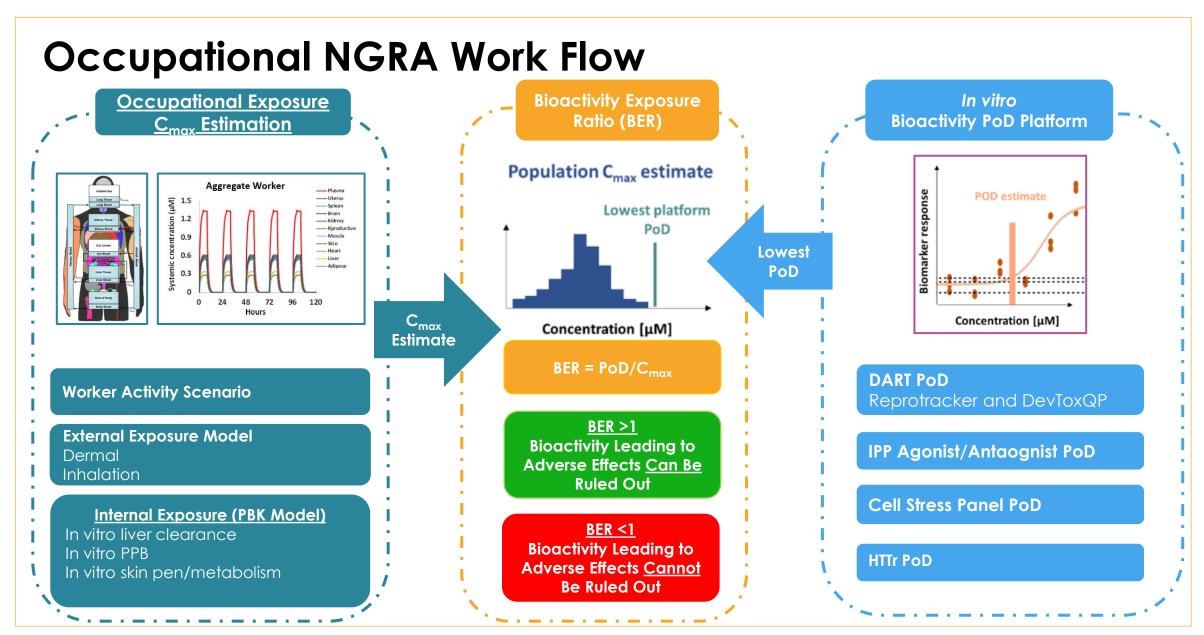
Submission number: AV349087-16 Submission date: 19/10/2012 Registered tonnage band: Over 1000

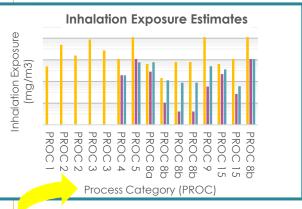
DECISION ON A COMPLIANCE CHECK

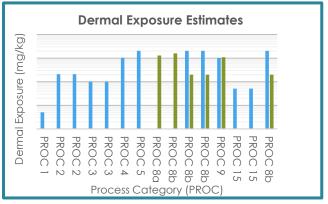
Based on Article 41 of Regulation (EC) No 1907/2006 (the REACH Regulation), ECHA requests you to submit information on:

- Water solubility (Annex VII, Section 7.7.; test method: EU A.6./OECD TG 105)
- In vitro gene mutation study in bacteria (Annex VII, Section 8.4.1.; test method: Bacterial reverse mutation test, EU B.13/14. / OECD TG 471) with the registered substance;
- In vitro cytogenicity study in mammalian cells (Annex VIII, Section 8.4.2., test method: OECD TG 473) or in vitro micronucleus study (Annex VIII, Section 8.4.2, test method: OECD TG 487) with the registered substance;
- 4. In vitro gene mutation study in mammalian cells (Annex VIII, Section 8.4.3.; test method: OECD TG 476 or TG 490) with the registered substance, provided that the studies requested under 2. and 3. have negative results;
- Sub-chronic toxicity study (90-day), oral route (Annex IX, Section 8.6.2.; test method: EU B.26./OECD TG 408) in rats with the registered substance;
- Pre-natal developmental toxicity study (Annex IX, Section 8.7.2.; test method: EU B.31./OECD TG 414) in a first species (rat or rabbit), oral route with the registered substance;
- Pre-natal developmental toxicity study (Annex X, Section 8.7.2., column 2; test method: EU B.31./OECD TG 414) in a second species (rat or rabbit), oral route with the registered substance;
- Extended one-generation reproductive toxicity study (Annex X, Section 8.7.3.; test method: EU B.56./OECD TG 443) in rats, oral route with the registered substance specified as follows:
 - Ten weeks premating exposure duration for the parental (P0) generation;

Occupational NGRA – What is it?

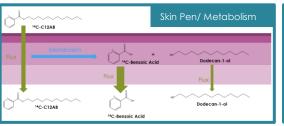

Occuptational NGRA is exposureled, hypothesis-driven approach integrating New Approach Methodologies (NAMs) to demonstrate worker safety <u>without</u> <u>animal testing</u>

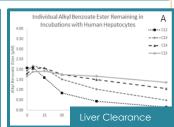

Exposure Assessment

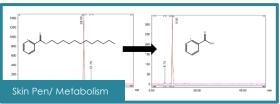


External Exposure Modelling

Unilever

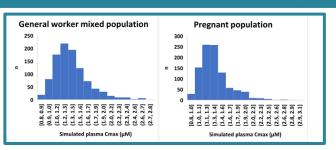






Worker Activity Scenario (Formulation)

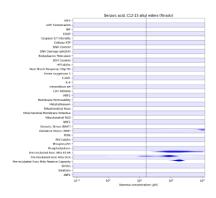
In vitro ADME for input to PBK

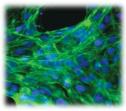


Internal Exposure (PBK Population Model)



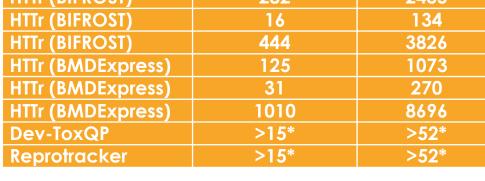
Population type (n=1000)	Median (µM)	5th %ile [µM]	Mean [µM]	95 th %ile [µM]
General population	1.32	0.97	1.38	1.98
Pregnant population	1.29	0.98	1.34	1.90


Bioactivity Assessment

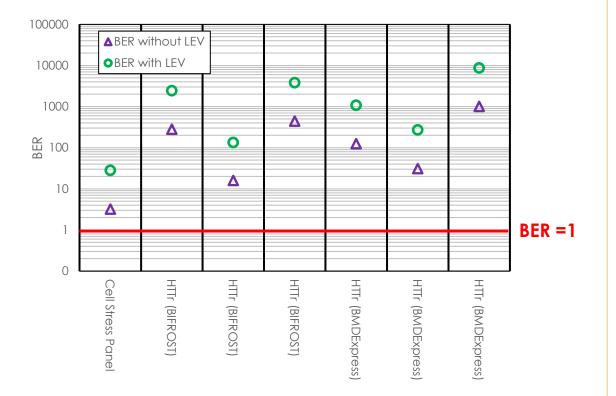


Bioactivity Platform	Cell Line/Type	Nominal PoD (µM)
Cell Stress Panel	Human HepG2	16 (6.4*)
IPP	Various	>10
HTTr (BIFROST)	Human MCF7	1400
HTTr (BIFROST)	Human HepG2	77
HTTr (BIFROST)	Human HepaRG	2200
HTTr (BMDExpress)	Human MCF7	617
HTTr (BMDExpress)	Human HepG2	155
HTTr (BMDExpress)	Human HepaRG	>5000
Dev-ToxQP	Human iPSC	>30
Reprotracker	Human iPSC	>30

- Large suite of in vitro bioactivity assays on human cell lines to derive PoD with good biological coverage
- Module further supplemented to include screening coverage for DART endpoints
- Lowest nominal PoD from CSP assay was 6.4 µM adjusted following analytical determination of concentration in test media (accounts for poor solubility, plastic binding and instability)



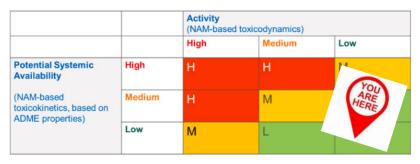
Risk Assessment



Bioactivity Platform	BER without LEV	BER with LEV
Cell Stress Panel	3.2	28
IPP	>5*	>43*
HTTr (BIFROST)	282	2435
HTTr (BIFROST)	16	134
HTTr (BIFROST)	444	3826
HTTr (BMDExpress)	125	1073
HTTr (BMDExpress)	31	270
HTTr (BMDExpress)	1010	8696
Dev-ToxQP	>15*	>52*
Reprotracker	>15*	>52*

Lowest PoD

*included for comparative purposes as no PoD derived



Occupational BER >1 for All Activities
Includes Aggregate Exposure from Multiple Tasks During Typical 8h Shift
Conservative Inhalation Exposure Predominant Driver of Potential Risk/Low BER's

Conclusion

- Occupational NGRA successfully executed in EU REACH context
 - BER >1 for all worker activities
 - Confidently assign a low-risk conclusion using conservative <u>human-relevant</u> approaches
 - Animal testing to prove worker safety not justified from a scientific/ethical standpoint
 - Upheld last resort principle as per Articles 13 and 25 EU REACH
- Innospec EU REACH dossier updated in May 2023
 - NAMs also used to enhance/strengthen read-across
 - No feedback from ECHA yet
- EU REACH co-registrants are actively animal testing
 - Innospec have "opted-out"
 - Parallel animal vs non-animal approach will be interesting future case study!
- Not stopping here.....additional work to enhance NGRA includes:
 - Occupational exposure monitoring (especially for inhalation)
 - Compare Occupational vs Consumer exposure(s) and BER's

Berggren et al 2023 Reg Tox and Pharm, Vol 142,105431

Acknowledgements

Lauren Kavanagh Ian Callan

Matt Dent Steve Gutsell Hequn Li **Ruth Pendleton Hugh Barlow Sophie Cable** Iris Muller **Jade Houghton** Joe Reynolds **Predrag Kukic Gordon Riley Richard Cubberley Sue Martin**

Peter Sladen
Mike Crookes
Oliver Warwick

Chris Waine
Dan Threlfall

THANK YOU

QUESTIONS?

