Safety & Environmental Assurance Centre

www.seac.unilever.com

The Use of Toxicokinetic Models to Improve the Understanding of Internal Concentration for Ionisable Organic Chemicals in Fish

<u>Jacob-Joe Collins</u>¹, Alessia Giorgis², Dawei Tang², Leonardo Contreas², Tymoteusz Pietrenko², Patrik Engi², George Fitton², Bruno Campos²

¹University of Birmingham

²Unilever, Research and Development, Sharnbrook, Bedford MK44 1LQ

Introduction

Currently, there are several thousands of chemicals in use globally covering a broad chemical space. Many of these chemicals ionise at environmentally relevant pH levels as acids, bases, and zwitterionics.

Whilst there is evidence that zwitterionic membrane lipids have a significant impact on uptake of ionised chemicals, the aim of this work is to investigate a simple approach considering $D_{o/w}$ to improve an existing simple one compartment model's prediction of fish internal concentrations as part of a tiered approach [1, 5], so that the impact of physicochemical properties (**pKa**) and environmental conditions (**pH**) on the ionised chemical uptake by fish can be incorporated.

Triclosan is used as a case study chemical to demonstrate the improvement of the prediction of fish internal concentration using the method proposed.

Triclosan Example

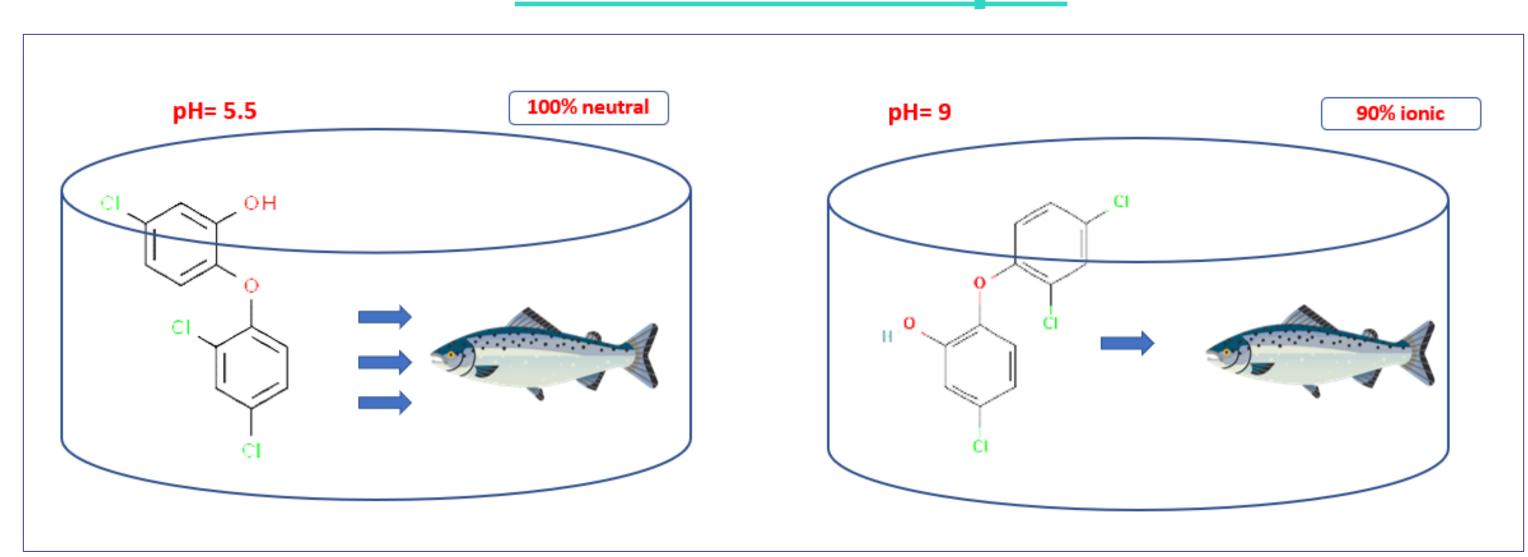
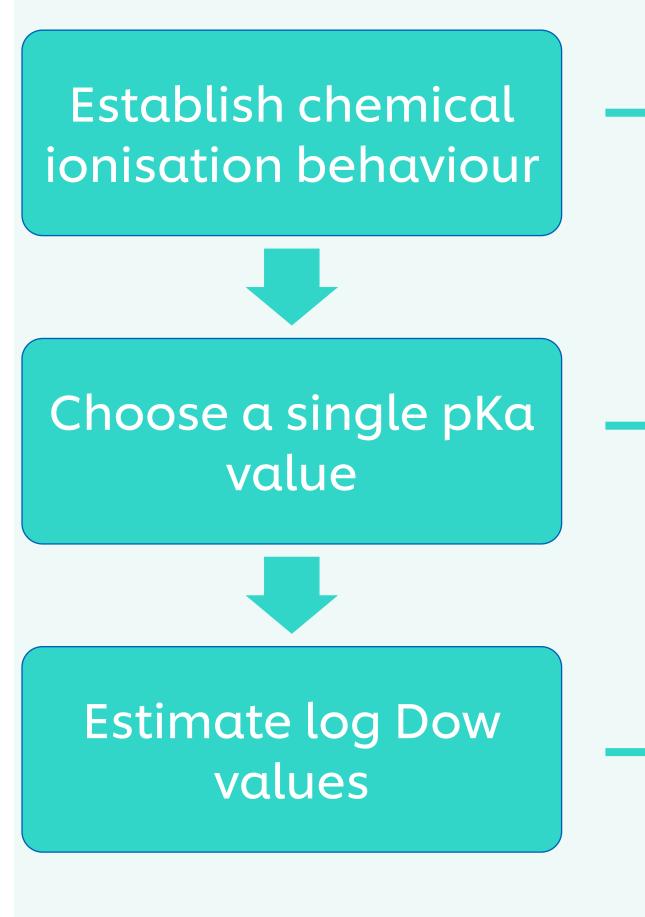


Figure 1: Illustrative example showing the difference in uptake of the same chemical

Objectives

- 1) Integrate ionisation into a one-compartment model for predicting the internal concentration of chemicals in fish species;
- 2) Estimate and compare the predictions of internal chemical concentration for ionic chemicals with and without the integration of ionisation


Methodology

Steady-state compartmental models [2, 3] predict internal concentration, y_{∞} , as the product of the octanol-water partition coefficient ($K_{o/w}$), the organism lipid fraction, v, and the external water concentration, y_e

$$y_{\infty} = y_e \cdot \nu \cdot K_{o/w} \tag{1}$$

However, many chemicals, including pesticides and pharmaceuticals can be ionised at environmentally relevant pH values. Therefore, to account for the potential impact of ionisable chemicals the distribution ratio $(D_{o/w})$ combined with the pH can be calculated potentially improving internal concentration predictions.

Summary and flow chart of the method (assuming chemical has a single ionisation site) is below. For multiple ionisation sites, chemical is regarded as an acid or a base while calculating the $D_{o/w}$ according to the ion that is most likely to be formed.

1. The SMILES string of a chemical is used as input for an ensemble of *in silico* tools (e.g. ACDLabs) to compute its pKa(s).

2. To obtain a single pKa value the weighted average from multiple *in silico* predictions is calculated, by keeping the prediction uncertainty of each *in silico* tool into account.

3. The so obtained pKa can be used to calculate the $D_{o/w}$, which can be used in place of the $K_{o/w}$:

 $log D_{o/w} = log K_{o/w} - log(1 + 10^{A(pH-pka)})$

Where A = 1 if the chemical is an acid, otherwise A = -1.

Results

A univocal pKa value for the chemical is calculated from the different pKa values provided by the different software used. In this poster, a realistic approach is to compute the average pKa value across different models, weighing each prediction by the inverse of their model standard deviation: in this way, the more robust predictions will have a stronger influence on the final pKa value.

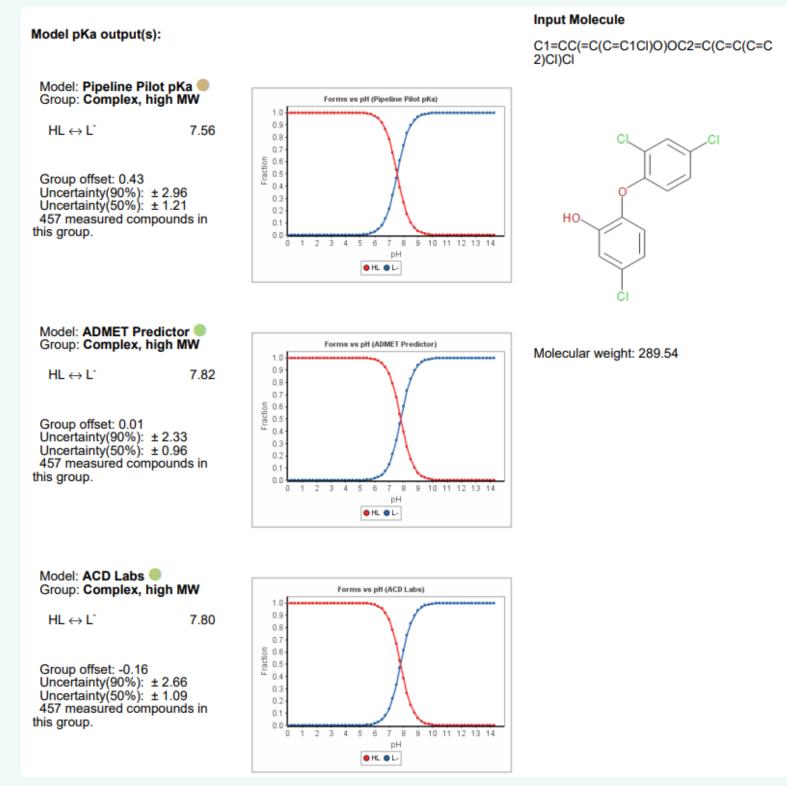
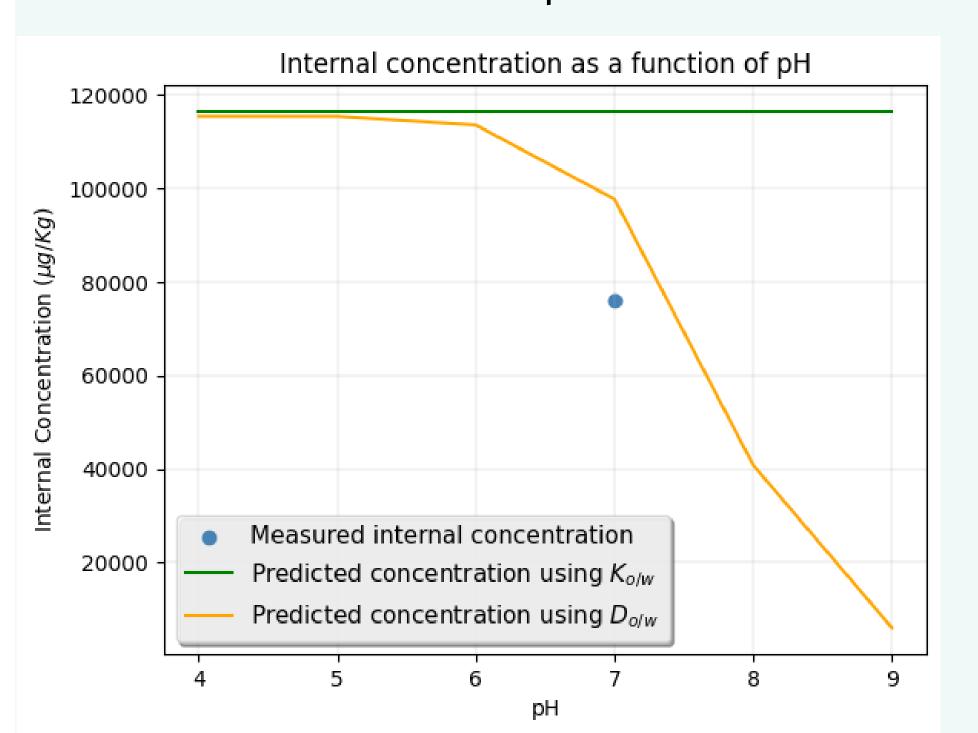



Figure 2: pKa values for triclosan generated by different in silico tools

The plot below shows how the $D_{o/w}$ could be a better choice to approximate the internal concentration of Triclosan ($K_{o/w} = 4.76$) in zebrafish using an exposure scenario [4] where environmental concentration of triclosan is equal to 30 µg/kg (hence $y_e = 30$ in equation (1)). Next to the plot, a table showing how $D_{o/w}$ changes over the environmental related pH range (4-9) is displayed. We also assume the total lipid fraction of the fish is 0.067 as per literature [2].

рН	$logK_{o/w}$	$log D_{o/w}$
4	4.760	4.760
5	4.760	4.759
6	4.760	4.752
7	4.760	4.687
8	4.760	4.308
9	4.760	3.473

Figure 3: Using the $D_{o/w}$ instead of $K_{o/w}$ allows a more accurate estimate of the internal concentration, which was experimentally determined under neutral pH conditions by Orvos et al. [4].

Table 1: The table shows $log D_{o/w}$ changing over different pH values. $log K_{o/w}$ remains unchanged.

Discussion

- 1. The use of $D_{o/w}$ instead of $K_{o/w}$ for triclosan, an ionisable chemical, corrects its lipophilicity (and thus its permeability) for a certain pH.
- 2. The method provides a better estimate of the internal concentration of triclosan in zebrafish (in steady-state conditions),
- 3. As the method only considers the impact of environmental pH and chemical pKa among other factors that influencing fish update of ionised chemicals, further efforts can include consideration/inclusion of other models/parameters (such as K_{MW}) to better model ionisable chemicals.

References

- [1] Armitage JM, et al., Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish. Environ Toxicol Chem. 2013 Jan;32(1):115-28.
- [2] Brinkmann M, et al., Cross-Species Extrapolation of Uptake and Disposition of Neutral Organic Chemicals in Fish Using a Multispecies Physiologically-Based Toxicokinetic Model Framework. Environ Sci Technol. 2016 Feb 16;50(4):1914-23.
- [3] Collins J, et al., Evaluating Toxicokinetic Compartmental Models as Predictors of Internal Concentration in Environmentally Relevant Species. ET&C. 2023 Preprint.
- [4] Orvos, R.D, et al., Aquatic toxicity of triclosan, Environ Toxicol Chem. 2002 21(7):1338-1349.

[5] Droge, S.T.J., Scherpenisse, P., Arnot, J.A., Armitage, J.M., McLachlan, M.S., Ohe, P.C.V.D., Hodges, G. Screening the baseline fish bioconcentration factor of various types of surfactants using phospholipid binding data (2021) Environmental Science: Processes and Impacts, 23 (12), pp. 1930-1948