
- Structural alerts, random forest and neural networks 

have been used to build high performing models for 

human MIEs.

- These models have been combined to provide an 

increase in model performance.

- Networks can be updated to provide quantitative 

predictions more suitable for risk assessment.

Conclusions

The molecular initiating event (MIE) [1,2,3] can be thought of as a gateway

to the adverse outcome pathway (AOP) [4] - the initial chemical interaction.

By understanding MIEs we can understand the kinds of interactions

molecules make, and hence the kinds of adverse outcomes they might

cause. Chemistry is key to understanding the MIE. What is it about these

molecules that allow them to do this?

In this study, a variety of computational approaches have been used to try

and make activity predictions at human MIEs. Structural alerts have been

built automatically using a maximal common substructure algorithm and

Bayesian statistics in KNIME. Random forest models were constructed

using sklearn and RDKit in Python 3, with 200 physicochemical descriptors

as the input. Neural networks were developed with extended connectivity

fingerprints as features in Python 3 using TensorFlow. A variety of network

architectures, activation functions and hyperparameters were considered

and optimised to give the highest level of statistical performance.

Introduction

Models were trained and evaluated on a consistent dataset extracted from

the publicly available databases ChEMBL [5] and ToxCast [6] across 79

human targets, including some from the Bowes [7] and Sipes [8] lists.

Statistical performance has been analysed based on model sensitivity

(SE), specificity (SP), accuracy (ACC) and Matthews correlation coefficient

(MCC). Average model performance is shown below.

Model predictivity is relatively consistent across the three approaches, with

neural networks performing the best overall, followed by random forests.

Random forests appear to perform better at predicting experimental

negatives, while structural alerts and neural networks perform better on

experimental positives.
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Neural networks for binary activity prediction have been adapted for

quantitative activity predictions based on data extracted from ChEMBL [5].

These predictions are more suitable for tasks in risk assessment where

quantitative values are required for comparison to chemical exposures.

Here predicted activity at the androgen receptor (AR) is plotted against

experimental activity for test set data. The graph is broken down into

coloured blocks for each 10% of the test set. Root mean squared error

values are shown for each section and in total. The data is skewed to

p(Activity) vales between 4 and 5, making this a challenging prediction

task. Despite this the network performs well, averaging predictions within

one Log unit.

Quantitative Predictions

Training Data

SE SP ACC MCC

Structural Alerts 91.0 95.8 95.0 0.882

Random Forests 94.9 94.7 96.4 0.915

Neural Networks 92.3 96.8 95.9 0.904

Test Data

SE SP ACC MCC

Structural Alerts 84.1 93.5 91.1 0.790

Random Forests 89.0 90.4 92.2 0.815

Neural Networks 87.9 93.6 92.8 0.832

Making comparisons between different modelling approaches allows us to

identify their strengths and weaknesses. However, different models need

not always be viewed in competition. By combining the structure-based

structural alerts and physicochemical-based random forests a consensus

model can be produced. This was done across 24 biological targets.

Predictions were kept where the models agreed and labelled “inconclusive”

where they disagreed. [9]

The models were found to agree on 92.1% of all predictions, and a notable

increase in predictivity is seen. This combination approach increases

confidence in computational predictions and allows predictions derived

from different types of molecular features.

The ICH M7 regulatory guidelines [10] provide an avenue for in silico tools

to see greater use. The use of complementary modelling procedures is

required for these guidelines to be met, and while both our models are

statistically derived, they may help bring this conversation forwards.

All binary predictors constructed, model build codes developed and

datasets extracted in this work are available online through GitHub;

https://github.com/teha2/chemical_toxicology
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Test Data

SE SP ACC MCC

Structural Alerts 86.6 90.9 90.2 0.782

Random Forests 91.5 86.8 91.3 0.804

Consensus 92.2 92.6 94.1 0.865
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