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Why?

- 12 years, $1.3bn per drug

- 25% preclinical success rate (n= 449)

- 7.6% likelihood of approval (n= 3496) 

Wouters, et al. JAMA, 323(9), 844–853. (2020). https://doi.org/10.1001/jama.2020.1166 

Takebe et al. Clinical and translational science, 11(6), 597–606. (2018). https://doi.org/10.1111/cts.12577

Hay et al. Nat Biotechnol 32, 40–51 (2014). https://doi.org/10.1038/nbt.2786
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Clear need for better early predictors of in vivo success

- Animal testing of cosmetic products/ingredients banned in EU since 2013

- Push to develop in vitro, animal free systems for use in cosmetic product and ingredient safety risk assessments



Positron emission tomography (PET) - what & why? 

- High resolution imaging technique utilising a radiotracer

- Short half life isotopes ¹⁸F (~109min), 68Ga (~68min), and 11C (~20min)

- Combined with CT for structural relevance



Jeong won Lee, et al. J. Clin. Med. 2019, 8(8), 

1169; https://doi.org/10.3390/jcm8081169

- High sensitivity imaging technique utilising a radiotracer

- Short half life isotopes ¹⁸F (~109min), 68Ga (~68min), and 11C (~20min)

- Combined with CT for structural relevance

Positron emission tomography (PET) - what & why? 



Overview

- Background

- Hypothesis and aims

- Designing and testing a novel device

- Optimising co-culture

- Kinetic studies

- Future work



Hypothesis

Body-on-chip platforms capable of circulating drug loaded media across 
multiple organ compartments can provide PK/PD predictions consistent with 

that of gold standard in vivo human PET data for the same drug.



Aims

- Optimise the use of a body-on-chip platform such that it is capable of circulating drug-loaded media across 
multiple “organ” compartments arranged to mimic human physiology. 

- Use optimised device to sample “organ” drug concentrations at multiple time points for kinetic modelling

- Compare kinetic parameters to in vivo outcomes in human PET studies of the same compound



Brain = human neurons 

(SH-SY5Y)

Lung = human primary 

bronchial epithelial cells

Liver = hepatocyte cell 

line (HepG2)

Heart = human primary 

cardiomyocytes

Kidney= Immortalised

RPTECs (SA7K)

Docetaxel/[¹⁸F]FDG

Aims

- Optimise the use of a body-on-chip platform such that it is capable of circulating drug-loaded media across 
multiple “organ” compartments arranged to mimic human physiology. 

- Use optimised device to sample “organ” drug concentrations at multiple time points for kinetic modelling

- Compare kinetic parameters to in vivo outcomes in human PET studies of the same compound

Stadulytė et al. Journal of chromatography. B. 

1118-1119, p33-39; (2019). DOI: 

https://doi.org/10.1016/j.jchromb.2019.04.026

https://doi.org/10.1016/j.jchromb.2019.04.026
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Design & test body-on-chip device

[¹⁸F]FDG/[¹⁸F]NaF PET 

scans to assess flow

Produced 3D 

printed prototypes
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Design & test body-on-chip device
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Cell culture media optimisation
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Separation of compartments

Common medium?



Separation of compartments via endothelial barrier

Endothelial cells

Transwell insert
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Separation of compartments via endothelial barrier

Endothelial cells

“organ” cells



Separation of compartments via endothelial barrier

Endothelial cell medium

Endothelial cells

“organ” cells Cell-specific medium



Separation of compartments via endothelial barrier

Endothelial 
medium

0.22mg/mL Evans 
blue in endothelial 

medium

Assess using 
a microplate 

reader at 
610nM

Take small samples over time to 
measure % Evans blue crossing 

the barrier

Wu, Meng-Chih et al. NeuroReport 32(11): 957-964 

(2021). https://doi.org/10.1097/WNR.0000000000001690
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Modelling definitions

Ki = the rate of influx for a model using irreversible binding (Patlak model for FDG)

VT = Total volume of distribution 

SUV = standardised uptake value, calculated as concentration in tissue normalised to injected dose and body weight

SUVmean = the average SUV across a tissue/organ of interest



In vitro FDG Ki significantly correlates with in vivo SUVmean

Ki = the rate of influx for a model using irreversible binding (Patlak model for FDG)

VT = Total volume of distribution 

SUV = standardised uptake value, calculated as concentration in tissue normalised to injected dose and body weight

SUVmean = the average SUV across a tissue/organ of interest

P= 0.0594, Pearson’s correlation, n=1 P= 0.0416, Pearson’s correlation, n=1

André H. Dias et al. EJNMMI Res. 12: 15. (2022). https://doi.org/10.1186/s13550-022-00884-0
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Device allows for quantification of docetaxel and metabolites

Ki = the rate of influx for a model using irreversible binding (Patlak model for FDG)

VT = Total volume of distribution 

SUV = standardised uptake value, calculated as concentration in tissue normalised to injected dose and body weight

SUVmean = the average SUV across a tissue/organ of interest

Astrid A. M. van der Veldt et al. Journal of Nuclear Medicine and Molecular Imaging. 

37(10): p1950–1958; (2010). DOI: https://doi.org/10.1007/s00259-010-1489-y
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Conclusions
- The novel device is capable of housing 5 transwell inserts with even flow through all compartments

- Transwell dual seeding method allows for fluid separation of all compartments without the need for a common 

medium

- The device can be used to assess rate of influx into tissue, with potential for more accurate predictions of kinetic 

parameters upon further development

- The device allows for the detection of metabolites as well as assessment of their distribution

- There is clear bias in the elimination compartments (kidney/liver)



Conclusions

Future work

- Incorporate renal/hepatic clearance and assess its effect on bias

- Slowly increase complexity of the organ compartments

- Incorporate oral absorption via intestinal compartment

- The novel device is capable of housing 5 transwell inserts with even flow through all compartments

- Transwell dual seeding method allows for fluid separation of all compartments without the need for a common 

medium

- The device can be used to assess rate of influx into tissue, with potential for more accurate predictions of kinetic 

parameters upon further development

- The device allows for the detection of metabolites as well as assessment of their distribution

- There is clear bias in the elimination compartments (kidney/liver)
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HPLC LOQ - docetaxel

The HPLC LOQ refers to the lowest amount of a compound that can be accurately detected AND quantified 

reliably and accurately. This is calculated as follows:

𝑳𝒊𝒎𝒊𝒕 𝒐𝒇 𝒒𝒖𝒂𝒏𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎 ×
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝒕𝒉𝒆 𝒀 𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕

𝑺𝒍𝒐𝒑𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒖𝒓𝒗𝒆
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𝑺𝒍𝒐𝒑𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒖𝒓𝒗𝒆

HPLC LOQ - docetaxel

The HPLC LOQ refers to the lowest amount of a compound that can be accurately detected AND quantified 

reliably and accurately. This is calculated as follows:



Separation of compartments via endothelial barrier

HUVEC nuclei stained with haematoxylin on the 
underside of a 12-well insert

HUVECs stained (badly) with DAPI and CD31 on the 
underside of a 12-well insert



Kinetic studies
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