INTERNATIONAL COLLABORATION ON **COSMETICS SAFETY**

P. Kern¹, N. Alépée², A. Aptula³, D. Bury⁴, E. DeConinck¹, J. Ebmeyer⁵, F. Gautier⁴, N. Gilmour³, S. Hoffmann⁶, J. Kühnl⁵, C. Lester⁷, M.Miyazawa⁸, K. Nakayama⁸, H. Nishida⁹, E. van Vliet¹⁰, and G. Yan⁷ ¹Procter & Gamble Services NV/SA, Strombeek-Bever, Belgium; ²L'Oréal, Aulnaysous-Bois, France; ³Unilever, Bedford, United Kingdom; ⁴L'Oréal, Clichy, France; ⁴L'Oréal, Clichy, France; ³Unilever, Bedford, United Kingdom; ⁴L'Oréal, Clichy, France; ⁴L'

NGRA case study scope

ICCS

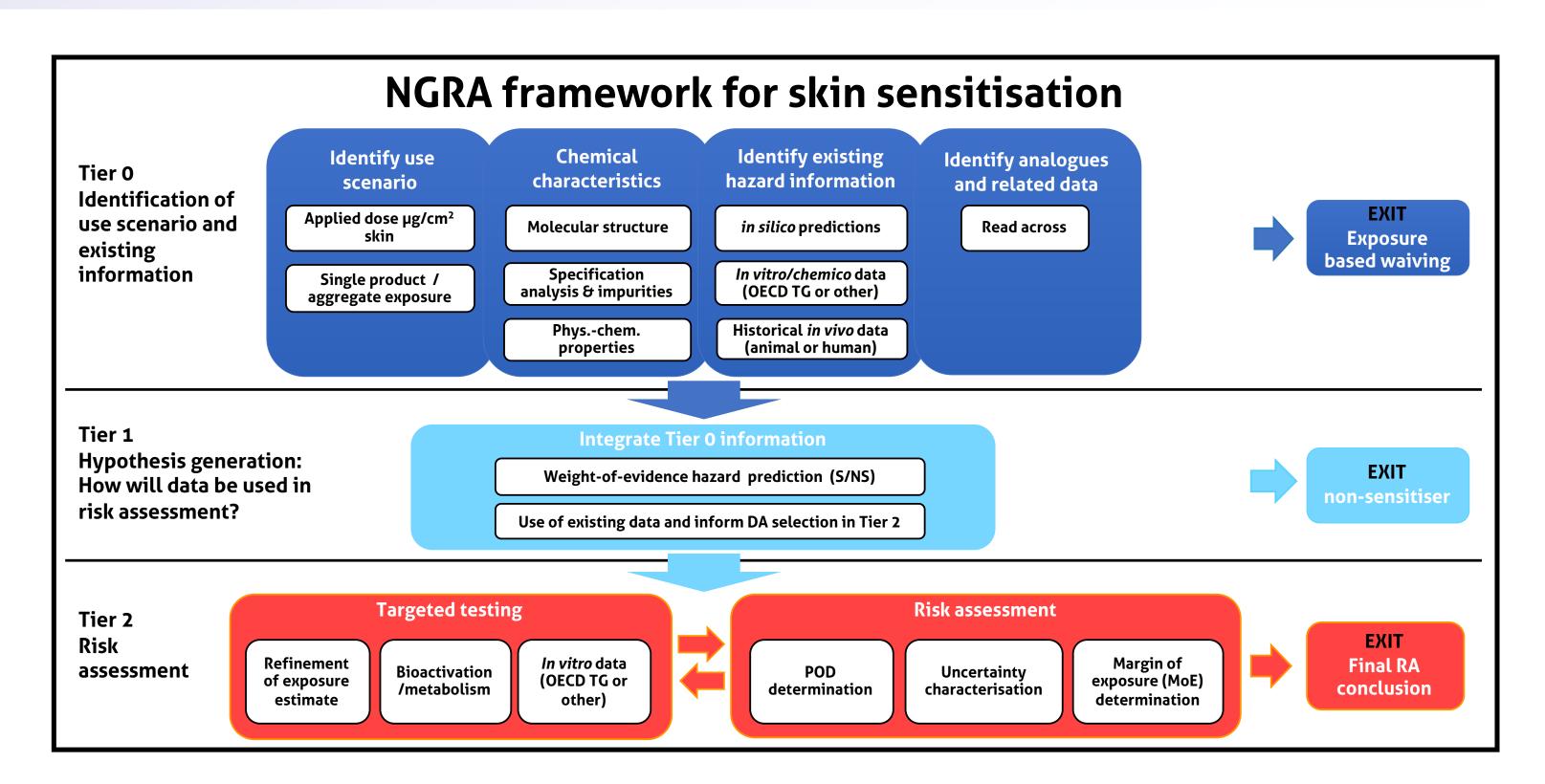
Advancements have been made in the evaluation of skin sensitisation hazard and potency by using new approach methodologies (NAM) and Defined Approaches (DA) for decision-making within a Next Generation Risk Assessment (NGRA). However, the derivation of a point of departure (PoD) remains a challenge for chemicals for which NAM data and/or DA outputs are associated with limitations and excessive uncertainty. This case study demonstrates how information from read across analogues can be applied, separately or in combination with NAM data to support PoD setting. Anisyl alcohol (AA) was selected as case study ingredient, due to its data richness and its suitability for investigating and identifying read-across analogue(s).

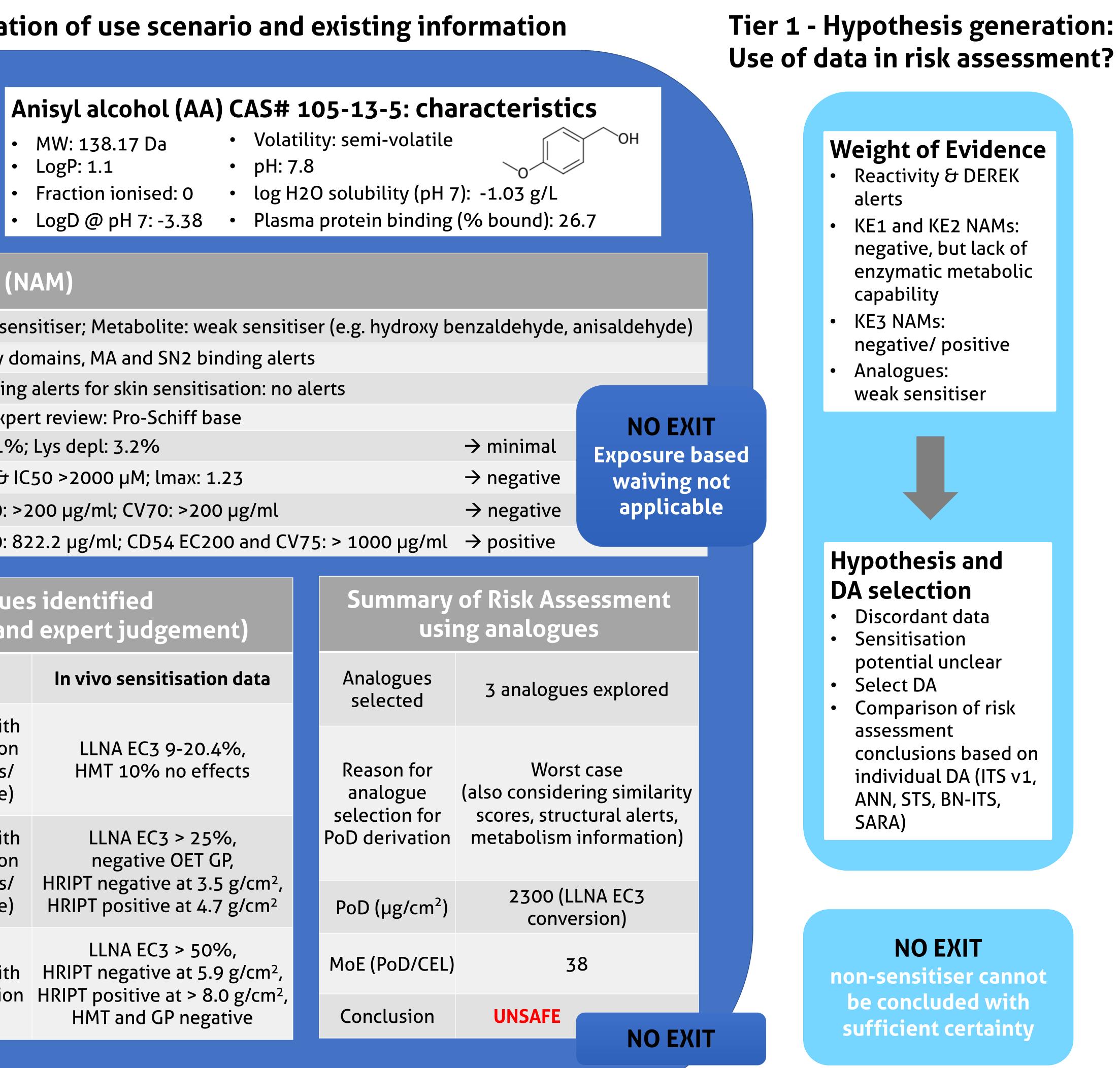
Tier 0 - Identification of use scenario and existing information

Use scenario (cosmetic leave-on)

Consumer exposure level (CEL) using 0.8% AA in a deodorant: 60 µg/cm²

- MW: 138.17 Da
- LogP: 1.1
- Fraction ionised: 0
- LogD @ pH 7: -3.38


Existing hazard information (NAM)


TIMES-SS	Parent: non-sensitiser; Metabolite: weak sen
ToxTree	No reactivity domains, MA and SN2 binding a
OECD Toolbox	Protein binding alerts for skin sensitisation:
DEREK Nexus	Positive; Expert review: Pro-Schiff base
DPRA (KE1)	Cys depl: 7.1%; Lys depl: 3.2%
KeratinoSens™ (KE2)	EC 1.5, EC3 & IC50 >2000 µM; lmax: 1.23
U-SENS™ (KE3)	CD86 EC150: >200 µg/ml; CV70: >200 µg/m
h-CLAT (KE3)	CD86 EC150: 822.2 µg/ml; CD54 EC200 and

Suitable analogues identified (using automated tools and expert judgement)

(0)8			
Chemical (CAS#)	Structure	Rating	In vivo sensitisation data
Anisyl acetate (104-21-2)		Suitable with precondition (hydrolysis/ metabolite)	LLNA EC3 9-20.4%, HMT 10% no effects
Anis- aldehyde (123-11-5)		Suitable with precondition (hydrolysis/ metabolite)	LLNA EC3 > 25%, negative OET GP, HRIPT negative at 3.5 g/cm HRIPT positive at 4.7 g/cm ²
Benzyl alcohol (100-51-6)	ОН	Suitable with interpretation	LLNA EC3 > 50%, HRIPT negative at 5.9 g/cm HRIPT positive at > 8.0 g/cm HMT and GP negative

Decision making in Next Generation Risk Assessment (NGRA) for Skin Sensitisation: How useful Read-Across Analogue Data can be

Case study Results

- toxicological features, reactivity, metabolism and expert knowledge.
- Three analogues with historical human, in vivo data or NAM information were selected, all.
- Analogues alone did not provide sufficient confidence to conclude on risk.
- the PoD and to increase the confidence in the NGRA, with one exception.

Conclusions

This case study illustrated how data from read-across analogues either as stand alone or in combination with NAM/ DA information can support PoD derivation. Read-across information can be critical in an NGRA for decision making, in particular when NAM data and DA outputs are associated with limitations and high uncertainty.

Tier 2 - Targeted Testing and Risk assessment

	etting and R	isk assessme	nt based on N/	AM/DA data	alone	
	ITS V1	ANN	STS	BN-ITS	SARA	
DA output	Cat 1B	EC3= 77.7%	NS P(Cat 1) = 19%	Weak Sensitizer P(W) = 90%	ED ₀₁ =23000 μg/cm ² (2.5%, 97.5%: 1100 -580000 μg/cm ²)	
PoD (µg/cm²)	>500	19425	25000	1000-4700	23000	
MoE (PoD/CEL)	>8.3	324	420	16-50		
Confidence in NAMs	5	High (in applic	cability domain, no	o technical issue	es)	
Conservatism in transforming DA outcome to PoD	unknown	low	high	high	low	EX
MoE certainty	low	high	high	low		SAFE/UI
P(low risk) ^{SARA}						depends and DA-s
Risk assessment conclusion	UNSAFE	SAFE	SAFE	UNSAFE	UNSAFE	confid
Refine	d PoD setti	ng and Risk a	ssessment by	adding anal	ogues	
Add Analogue information	Yes	Yes	No (high certainty & MoE)	Yes	Yes	
Analogs used		All thre	ee used and evalua	ated by all		
	Similar scores	Similarity scores and		WoE of all analogs,	ED ₀₁ is within, but at lower potency	
Reason for picking analogues for PoD setting		structural alerts of Benzyl alcohol		including BN- ITS results	end, of the range of ED ₀₁ derived for analogues	
analogues for PoD	alcohol and	of Benzyl			of ED ₀₁ derived for	
analogues for PoD setting	alcohol and AA	of Benzyl alcohol		ITS results	of ED ₀₁ derived for analogues 2300-30000	
analogues for PoD setting PoD (µg/cm ²)	alcohol and AA 5900	of Benzyl alcohol 5900	high	ITS results 3000-35000	of ED ₀₁ derived for analogues 2300-30000 µg/cm ²	EX AFE or Bo

P 321 ID: 3208

• Suitable analogues were identified using a variety of approaches considering structural similarity, biological and

• PoD were derived using a) analogues, b) NAM/DA and c) analogues in combination with NAM/ DA (where needed)

• DA outputs varied considerably, leading to differences in PoD and resulting in inconsistent risk assessment conclusions.

• Analogue information was added to refine risk assessments, where needed. For the DA ITSv1, a PoD was derived from in vivo data of an analogue. For others, DA outputs were consistent with PoDs based on analogues, which allowed to refine

Conflict of interest

The authors PK, NA, AA, DB, ED, JE, FG, NG, JK, CL, MM, KN, HN, and GY are employed by cosmetic companies. The authors SH and EvV are consultants paid for their services by ICCS..