

TEXAS A&M

UNIVERSITY®

ONBOARDING AND TESTING OF MICROPHYSIOLOGICAL SYSTEMS: EXPERIENCE OF THE TEX-VAL CONSORTIUM Courtney Sakolish¹, Clifford Stephan², Richard A. Becker³, Maria T. Baltazar⁴, Philip Hewitt⁵, Ivan Rusyn¹

The NCATS Tissue Chip Testing Centers (TCTC) program promotes a systematic approach to testing the feasibility of **TEX-VAL Consortium Member Organizations** the technology transfer of microphysiological systems (MPS) from developers to end-users. From 2016 to 2020, the TCTC at Texas A&M University tested approximately two dozen MPS that represented a wide variety of 2024 2020 2022 2023 2021 tissues/organs developed by academic researchers based in the United States. Since 2020, this NIH-funded testing center has evolved into a university-based collaboration of diverse end-user stakeholders to establish the TEX-VAL sanofi sanofi sanofi sanoti sanoti Tissue Chip Testing Consortium (TEX-VAL Consortium). The TEX-VAL Consortium brought together pharmaceutical companies – Sanofi-Aventis US (Framingham, MA), Bristol-Myers Squibb (Princeton, NJ), F. Hoffmann-La Roche Bristol Myers Squibb Bristol Myers Squibb Bristol Myers Squibb Bristol Myers Squibb abbvie (Switzerland) and Merck KGaA (Germany); a consumer goods company Unilever (UK); a trade association of chemical manufacturers - The American Chemistry Council (Washington, DC); and government agencies that American Chemistry Council[®] A GENCE American Chemistry Council[®] American Chemistry Council[®] American Chemistry Council[®] American Chemistry Council[®] develop, promote and use various in vitro methods – US EPA (RTP, NC) and Division of Translational Toxicology at NIEHS (RTP, NC). The overall framework for TEX-VAL Consortium involves equitable monetary contributions from the National Toxicology Program U.S. Department of Health and Human Services National Toxicology Program U.S. Department of Health and Human Services National Toxicology Program National Toxicology Program U.S. Department of Health and Human Services members, while Texas A&M University provides in-kind support in the form of facilities and equipment use. Member National Toxicology Program U.S. Department of Health and Human Services organizations collectively decide on the annual work plan and the research staff at Texas A&M University conduct experiments and share their findings through bi-weekly meetings with TEX-VAL Consortium members. All data Merck Merck Merck Merck generated by TEX-VAL is deposited into the MPS-Database and made public one year after it has been finalized for each study. Since 2020, the TEX-VAL Consortium tested several commercial models for the liver, proximal kidney tubule, gut, blood brain barrier, lung and other tissues. Each model was evaluated with different commercially-Roche Roche available primary and iPSC-derived cell types and benchmarked to appropriate 2D models as well as other MPS. The robustness, reproducibility and fit for both drug development and regulatory decision-making are evaluated based on the feedback received from all participating stakeholders. Results are shared with the wider community through peer-The TEX-VAL Consortium has grown to include 7-8 member organizations since its establishment in 2020. Member reviewed publications, the MPS database, and presentations. Overall, we conclude that TEX-VAL Consortium efforts organizations are asked to volunteer 2-3 investigators who participate in bi-weekly calls and provide towards building consensus and promoting the gradual incorporation of MPS models into tiered approaches for safety recommendations for testing conditions, treatments, analyses, etc. for tissue chip testing and evaluation. assessment and decision-making is the sensible path to their wider adoption.

Texas A&M Tissue Chip Testing Center (TCTC; 2016-2020)

Core principles for TEX-VAL Center tissue chip testing:

- Inclusion of faculty/staff with broad relevant technical and scientific expertise
- •Experience with using "new alternative methods" in regulatory decision-making
- •Full independence from NCATSfunded tissue chip development
- Side-by-side comparison of the MPS with *in vitro* (2D) and *in vivo* data
- Transparency and communication of the outcomes of testing to the developers, and other stakeholders

TEX-VAL Workflow

Tier -1:	Tier 0:
Collaborative research and	Tissue chip testing without cells
technology transfer agreements	 Assembling of tissue chips
 Execution of all legal agreements 	 Testing of the flow and operation
 Sharing of the protocols 	 Testing drug binding to devices
 TAMU staff training with developers 	 Development of LC-MS methods

TEX-VAL Center IBT/BCM (Houston, TX) MANCINI Lab: 8 nemical storage/dilutions • Imaging Tissue chip experiments ssue chip experiments (if extra capacity is neede Protocols and data information TAMU (College Station, TX) HAN Lab: luidics issues Tissue chip experiment (if extra capacity is neede gh-throughput genomics CHIU Lab: • PK and IVIVE modeling WADE Lab: Tier 2: Tier 1: **Reproducibility testing of** Extending the utility of the tissue chips tissue chips Replicating published studies
 Defining the "context of use" Conducting additional studies Evaluation of key findings Detailed protocols and SOPs Depositing data into MPS-Db **Oct. 2018 – Sept. 2020 (TEX-VAL 2.0)** uke) Rochester) b/Kelly (Univ. C-Davis) versity of Pittsburgh rsity of Pennsylvania) versity of Pittsburgh)

4-8 months period of testing for each tissue chip/microphysiological system (MPS)

Models tested as part of Tissue Chip Testing Centers

Oct. 2016 – Sep	ot. 2018 (TEX-VAL 1.0)
Proximal kidney tubule	Himmelfarb/Kelly (Univ. Washington)
Neurovascular unit (BBB)	Wikswo (Vanderbilt)
Bone +/- tumor	Vunjak-Novakovic (Columbia)
Gut enteroid	Donowitz/Estes (JHU/BCM)
Skin from iPS cells	Christiano (Columbia)
Heart	Healy (UC-Berkeley)
Vasculature +/- tumor	Hughes (UC-Irvine)/George (UC-Davis)

Arteriole-scale vessel	Truskey (Du
Salivary gland	Benoit (U-F
Vascularized kidney	Himmelfarl Washingtor
Atria on a chip	George (UC
Bone joint & cartilage	Tuan (Unive
Small Airway	Huh (Unive
Vascularized Liver (vLAMPS)	Taylor (Univ

11 academic tissue chip models tested

Skeletal muscle

Liver (multi-cell,

LAMPS)

White fat

Liver

Truskey (Duke)

Healy (UC-Berkeley)

Healy (UC-Berkeley)

Taylor (University of Pittsburgh)

7 academic tissue chip models tested

Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ²Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States, ¹Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ¹Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ¹Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ¹Department of Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ¹Department of Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ¹Department of Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ²Department of Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ²Department of Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ²Department of Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ²Department of Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ²Department of Pharmacology, Texas A&M University, College Station, Texas 77843, United States, ²Department of Pharmacology, Texas A&M University, College Station, Texas A&M University, College States, ²Department of Pharmacology, College States, ²Department of Pharmacology, College States, ²Department of Pharmacology, College States, ² ³American Chemistry Council, Washington, District of Columbia 20002, United States, ⁴Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK, ⁵Merck KGaA, Darmstadt, Germany

Background and Rationale

Texas A&M TEX-VAL Consortium (2020 – Current)

TEX-VAL Tissue Chip Testing <u>Center</u> \rightarrow <u>Consortium</u>

Aim 3: To establish revenue-generating activities for MPS validation beyond NIH funding:

- conduct site visits and seminars with stakeholders,
- identify interested parties for Consortium membership,
- negotiate a consortium agreement, and
- conduct tissue chip testing "happily ever after... NCATS"

How did TEX-VAL Consortium begin (2020)?

Goals of the Consortium:

• Bring together industry, trade association and government agencies to define a work plan and deliverables

• Defining a *work plan*: identifying *common* needs for "tissue chips": organs, platforms, cells, chemicals (+/- controls), phenotypes, etc.

Texas A&M University role:

• Execute on a Consortium's **work plan**:

- Procuring equipment and consumables
- Establishing the models in the lab
- Verifying reproducibility of cell sourcing
- Replicating key published findings
- Refining the models based on feedback

Consortium members

decide on the "fit for

[their] purpose" and

"context(s) of use"

TEX-VAL assists

members with

platform on-boarding

and troubleshooting

"On-demand" monthly small group meetings to focus on a particular model

TEX-VAL Consortium Members' Organs/Tissues of Interest

2020		2021		202	2022		2023		2024	
Organ	# Asks									
Liver	4	Liver	5	Liver	5	Liver	7	Liver	7	
BBB	1	BBB	4	BBB	4	BBB	6	BBB	2	
Kidney	3	Kidney	4	Kidney	4	Kidney	4	Kidney	5	
GI	2	GI	5	GI	5	GI	4	GI	2	
Repro	2	Repro	4	Repro	4	Repro	4	Repro	3	
Cardio	1	Cardio	1	Cardio	1	Cardio	2	Cardio	1	
Vascular	0	Vascular	0	Vascular	0	Vascular	1	Vascular	1	
Lung	2	Lung	1	Lung	1	Lung	1	Lung	1	

From 2020 to 2023, our workplans primarily involved surface-level testing of Tissue Chip models, including activities such as technology transfer, cell selection (testing multiple vendors, lots, etc.), baseline function, and toxicity testing. In 2024, we have reduced the number of models being tested, but we are now conducting more in-depth characterization of these models.

TEX-VAL's Contributions to the MPS-Database (Studies, Chips, Data Uploaded)

2020			2021			2022					
		Studies	Chips			Studies	Chips			Studies	Chips
Kidney	Glomerulus (Mimetas 3-lane)	6	360		Glomerulus (Mimetas 3-lane)	4	160	Kidney (PT)	Mimetas 3-lane CNBio T12 Transwells	6 4 2	431 216
Riancy	Proximal Tubule (Mimetas 3-lane)	7	320	Kidney	Proximal Tubule (Mimetas 3-lane, CN- Bio TC12, Transwells)	7	524	Liver	CNBio LC12	14	526
Liver	NortisBio (LAMPS)	11	90	Liver Mimetas 2-lane CNBio LC12		12 11	1,072 110		Transwells (Caco-2) Transwells (Enteroids)	2 5 1	23 91 18
Gut	Mimetas 3-lane (caco-2)	8	206		Transwells (Caco-2) Transwells (Enteroids)	4 5	4 96 Gu 5 216 3 147 6 240	Gut	Mattek (Epilntestinal) Mimetas (caco2)	1 1	24 14
Gut	Mimetas 3-lane (enteroids)	^{ne} 8	405	Gut	CNBio T12 (Caco-2) CNBio T12 (Enteroids)	3 6			2D culture (caco2)	1 1	25 96
	Small airway				Turana II.a	2	22	BBB	Transwells	5	58
Lung	(U-Penn Model)	6	115	RRR	Iranswells	3	32	FMI	FMi-OOC (Arum Han)	4	120
	Total:	42	1,500		Total:	55	2,600		Total:	47	1,700

Total: 42 1,500

2023	Platform	# Studies	Chips/wells	Data	Images	Personnel	Annual Effort
2023				points		Faculty	
	CNBio TC12	4	252	2861	TBA	Rusyn, Ivan	0%
Kidney	Transwells	3	240	2837	TBA	Chiu Weihsueh	0%
	Mimetas 3-lane plate	1	160	960	TBA	Charlen Clifford	0.2%
Liver	CNBio LC12	3	216	1728	216	Stephan, Clifford	9.2%
Liver	Mimetas 2-lane plate	2	288	TBA	TBA	Staff	
Gut 96-well Transwell		11	1014	7104 +	TBA	Sakolish, Courtney	75%
222	96-well Transwell	4	529	5030	324	Vergara, Leoncio	50%
ВВВ	24-well Transwell	9	249	2321	100	Jin, Unho	50%
TOTAL for 3D		37	<mark>3,000</mark>	23,000+	640+	Trainees	
Kidney Liver 96-well plate		2	576	1915	TBA	Lin, Alicia	66.6%
		5	1266	2298 +	3450 +	Moyer, Haley	16.7%
Gut	384-well plate	3	300	TBA	TBA	Barlow, Nikki	40%
BBB		2	222	426	0	Total effort "charged"	~3 full-time
TOTAL for 2D		12	2,400	4,600+	3450+	to TEX-VAL	research staff

- Example "LEARNINGS" of the Consortium: a. How to select the models for testing (organs/tissues of interest)
- b. ADME/PK is a common need (single chemicals and mixtures)
- c. Barrier function challenges (gel layer is an unphysiological barrier)
- d. Finding the right cells and device configuration combinations

Workplans Evolve as Interests Change

The "Value Proposition"

Conclusions

• A robust collaboration of diverse stakeholders who continue their participation each year • The "value proposition" exists for "try before you buy" operations through TEX-VAL

- e. Understanding the "cost" for increased technical complexity
- . The range of phenotyping methods to test "performance"
- g. Understanding the "true" cost and throughput
- h. Defining the needs for equipment (in addition to the "tissue chips")