Eurotox 2024 Abstract ID 356 Poster

Advancing the Application of New Approach Methodologies (NAMs) in **Systemic Toxicity Assessment of Cosmetic Ingredients: Insights from Cosmetics Europe Long Range Science Strategy (2016-2022) Case Studies**

Authors: C. Mahony¹, M. Baltazar², M. Dent², A. Giusti³, N. Hewitt³, A. Najjar⁴, G. Ouedraogo⁵, A. Schepky⁴ ¹ Procter & Gamble, Reading, United Kingdom, ² Unilever, Sharnbrook, United Kingdom, ³ Cosmetics Europe, Auderghem, Belgium, ⁴ Beiersdorf, Hamburg, Germany, ⁵ L'Oreal, Aulnay Sous-Bois, France,

In silico Activity

e.g. Docking,

ER binding

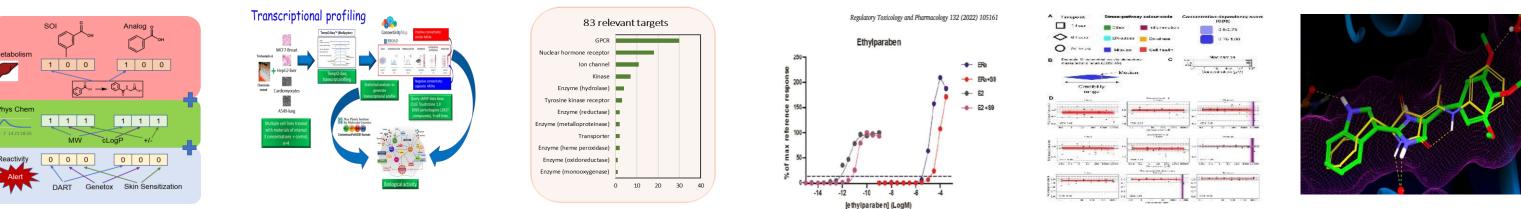
QSAR modelling

1. INTRODUCTION

Replacing animals in toxicological safety assessment requires a fundamental change from the current animal adverse outcome driven approach to a hypothesis, mode of action driven framework. Under the Cosmetics Europe Long Range Science Strategy (2016-2022) we performed a series of 15 read across and ab initio Next Generation of new approach methodologies (NAMs) in addressing specific hypotheses for systemic toxicity assessment, inspired by the Seurat-1 framework and the NGRA principles [1-2]. Read across case studies focused on building confidence in the use of different NAM approaches for the selection of appropriate analogues with chemistry, toxicokinetic and Mode of Action/bioactivity insights [3]. Ab initio and read across case studies rely on identifying levels of internal exposure and bioactivity [4]. For a subset of ab initio case studies, further testing was necessary based on hypotheses identified or due to uncertainties in the assessment. These included follow-ups with developmental toxicity and renal toxicity assays. In these cases, points of departure (PoDs) were compared with exposure metrics to support a safety evaluation that was at least as protective as traditional approaches.

The key insights have paved the way for various projects under the International Collaboration for Cosmetic Safety (ICCS), established in 2023. This global organization aims to foster confidence in NAMs, leading to international consensus that animals are no longer necessary for the safety assessment or registration of cosmetic ingredients.

2. METHODS USED FOR CASE STUDIES (NOT AN EXHAUSTIVE LIST OF NAM)


Pharmacology

Profiling *In vitro*

considered in a proof of concept

Transcriptomics Various cell **83 ligand affinity assays**

TO CHARACTERISE ADVERSITY/BIOLOGICAL EFFECTS *

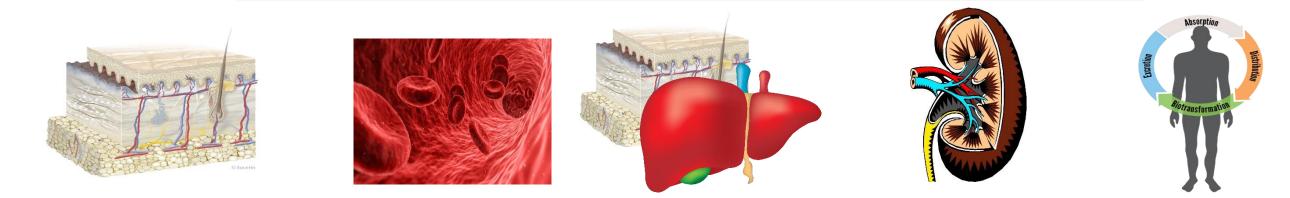
Functional Assays

e.g. EATS (endocr. activity)

Estrogen

Thyroid

Androgen


Steroidogenesis

Cell Stress Assays

Pathways related to cell stress

and cell health (HepG2 cells)

TO CHARACTERISE ADME PROPERTIES *

* Figures were adapted from several sources.

Reactivity 0 0 0 0 Alert DART Genetox Skin Sensitization
--

Toxicogenomics

pathways

types (MCF-7, HepG2, HepRG,

MoA, functional analogues and

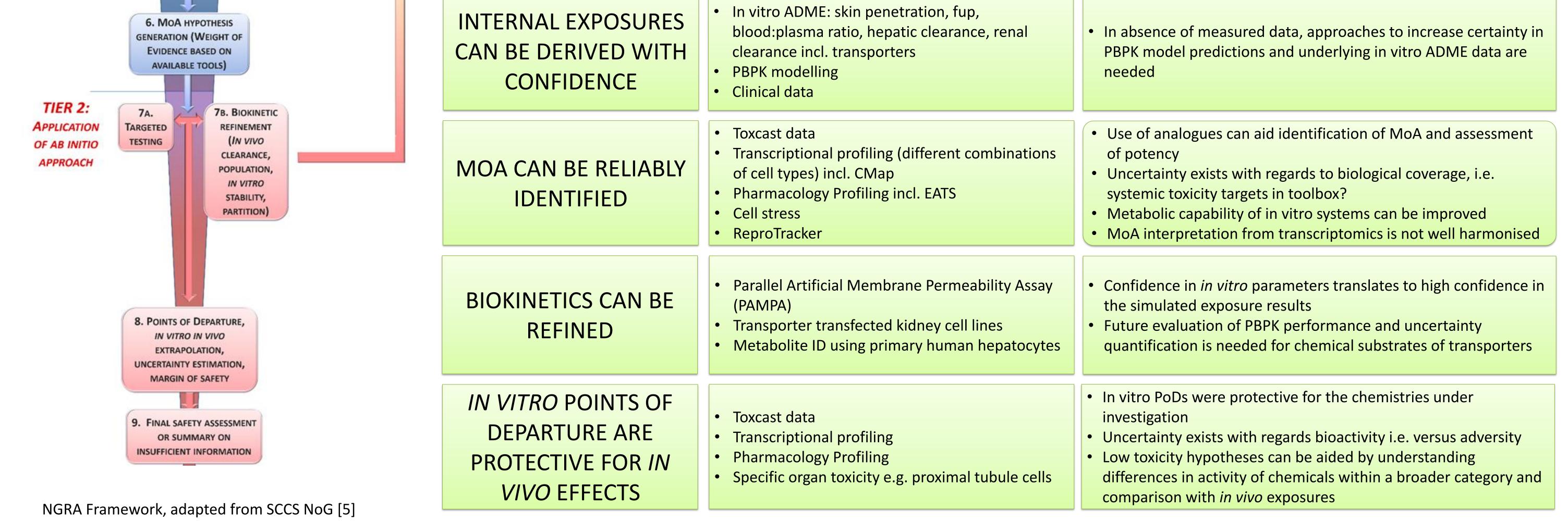
iCar, A549, PTC) for insights into study

Cheminformatics

MMP & qSIM

Across

OECD QSAR toolbox


ChemTunes-ToxGPS

For digitized approaches to Read

Cosmos database

Absorption	Distribution	Metabolism	Excretion	Pharmacokinetics
 Skin penetration study ex vivo pig skin ex vivo human skin Gut absorption Caco-2 	Plasma stability Plasma protein binding Blood plasma ratio	 Metabolic stability Human skin S9 mix NHEK (Normal Human Epidermal Keratinocytes) Primary human hepatocytes, Plasma, e.g. esters Multi-Organ-Chip (skin, liver) 	 Renal clearance kidney cell monolayer transfected cells containing human renal transporters 	 PBPK modelling Clinical studies Biomonitoring data

INFORMATION INFORMATION INTERDE INTERDE INTERDE INTERDE 1 1. JENTIFY ANALOGUES, SUTABILITY ASSESSMENT AND EXISTING DATA NOT A FOCUS OF THESE CASE STUDIES NOT A FOCUS OF THESE CASE STUDIES	3. CASE STUDIES TIER O: IDENTIFY USE SCENARIO, CHEMICAL OF CONCERN AND COLLECT EXISTING	NOT A FOCUS OF THESE CASE STUDIES	 READ ACROSS Genistein Avobenzo Caffeine a Homosala 2-Ethyleh 	Caffeine and methylxanthines		 Phenoxyethanol Climbazole Benzophenone 3 Benzophenone 4 Octocrylene BHT Benzyl salicylate Octyl methoxycinnamate 	
TIER 1: HYPOTHESIS FORMULATION FOR AB INITIO THESE CASE STUDIES S. SYSTEMIC BIOAVAILABILITY (TARGET ORGANS, INTERNAL CONCENTRATION) TTC TTC ANALOGUES ARE S. SYSTEMIC BIOAVAILABILITY (TARGET ORGANS, INTERNAL CONCENTRATION) TTC ANALOGUES ARE SUITABLY SIMILAR TO TARGET ANALOGUES ARE SUITABLY SIMILAR TO TARGET ANALOGUES ARE SUITABLY SIMILAR TO TARGET - Cheminformatics and in silico (various) tools	A. IDENTIFY ANALOGUES, SUITABILITY EXIT READ-		HYPOTHESIS	METHODS		KEY INSIGHTS	
	HYPOTHESIS FORMULATION FOR AB INITIO	C BIOAVAILABILITY RGANS, INTERNAL	SUITABLY SIMILAR TO	Cheminformatics and in silico (various) tools		 evaluation approaches is needed Expert judgement in read across needs to be minimised Metabolism and functional sub-structures are important in 	

4. CONCLUSIONS AND FURTHER WORK

The collective experience, along with the various hypotheses explored and methodology used in the different cases, has led to increased confidence in an exposure-led, mode of action driven

framework for systemic toxicity assessment

- Read across allows the use of analogues to fill data gaps and aid in supporting mode of action and potency assessments
- A combination of non-targeted broad testing approaches combined with targeted assays provided measures of bioactivity which appear to be at least as protective as traditional approaches. Conservatism in the approach could be refined by employing higher tier testing to distinguish bioactivity from adversity, and to test the biological and chemical coverage of the NAMs.
- Key insights have been translated (or are currently being translated) into projects under ICCS Human Health Science Advancing Animal-Free Science for Cosmetics (iccs-cosmetics.org)
- Finally, opportunities are sought to evaluate new approaches in a NGRA context, to understand the strengths and limitations. The placement of the LRSS case study chemicals within cosmetic, food additive, REACH and CLP regulation offers occasion to do so across industrial sectors

5. REFERENCES

1 - Gocht, T. et al. (2015) "The SEURAT-1 approach towards animal free human safety assessment", ALTEX - Alternatives to animal experimentation, 32(1), pp. 9–24. doi: 10.14573/altex.1408041. 2 - Dent, M. et al. (2018), "Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients, Computational Toxicology, 7(2018), pp:20-26, doi: 10.1016/j.comtox.2018.06.001 - Alexander-White, C. et al. (2022). A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment. Regul. Toxicol. Pharmacol. 129, 105094. doi:10.1016/j.yrtph.2021.105094. - Berggren, E. et al. (2017). Ab initio chemical safety assessment: a workflow based on exposure considerations and non-animal methods. Comput. Toxicol. 4, 31–44. doi:10.1016/j.comtox.2017.10.001 5 - SCCS (2021). Scientific committee on consumer safety, SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 11th revision. SCCS/1628/21

Check out LRSS publications

