
- NGRA requires a quantitative understanding of molecular 

activity and uncertainty in that value.

- Bayesian learning neural networks can provide quantitative 

predictions and uncertainties suitable for risk assessment.

- Leveraging tools such as these will allow computational 

toxicology to contribute to more areas of risk assessment 

decision making.

Conclusions

Next generation risk assessment (NGRA) [1] involves making a

comparison between the exposure of an individual to a chemical and the

hazard associated with that chemical to determine a margin of safety.

Exposure and hazard are typically treated as probability distributions, due

to factors such as uncertainties in experimental measurements and

population variance. Any overlap in these distributions represents a

potential risk. Because of this, an understanding of the quantitative activity

of a molecule and the uncertainty in such an estimate is required for NGRA

[2]. Many current in silico approaches are based on the classification of

molecules, for example as “active” or “inactive”, and as such cannot assist

in answering these questions. The ability of computational approaches to

produce robust numerical activity estimates coupled with an understanding

of their uncertainty will be key to the use of in silico methods in NGRA [3].

The molecular initiating event (MIE) [4,5,6] is the initial chemical-biological

interaction that can be thought of as a gateway to the adverse outcome

pathway (AOP) [7]. Modelling of MIEs allows for mechanistic

understanding of the kinds of interactions molecules can make, and hence

the kinds of adverse outcomes they might cause. This makes them ideal

targets for in silico modelling aiming to contribute to a mechanistic risk

assessment decision – one of the goals of NGRA.

Introduction

In this study we have built machine learning models for the prediction of

quantitative activity and uncertainty estimation at human MIEs.

Pharmacologically important human MIE targets from the Bowes list [8]

have been investigate, using open source data from the database ChEMBL

[9]. Initially, neural networks were trained on quantitative experimental data

(p(IC50), p(EC50), p(Ki), p(Kd)) to provide regression models using linear

outputs and mean absolute error (MAE) as the loss function and primary

evaluation statistic. Coefficient of determination values (R2) against the x=y

diagonal have also calculated for completeness. These were improved

using Bayesian learning in TensorFlow Probability [10] with Dense

Variational Layers to replace point value weights and biases throughout the

network with probability distributions. This process allows the quantitative

output to be produced, using a Monte Carlo simulation of 500 iterations, as

a mean and standard deviation representing the activity estimate and its

uncertainty. A training set was used in model training, with a randomly

removed validation set (for hyperparameter optimization) and test set (for

final model evaluation). An external validation set was obtained by

extracting new compounds from a more recent version of ChEMBL (version

25), for additional validation on chemicals less similar to the training data.

All models constructed, model build codes developed and datasets

extracted in this work are freely available online through GitHub;

https://github.com/teha2/chemical_toxicology
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As well as quantitative activity values, the Bayesian neural networks also

produce standard deviation values which can be treated as uncertainties in

their estimates. To evaluate their use, the standard deviations were

compared between the test set, external validation set and a random set,

of randomly shuffled molecular fingerprints. A histogram of these values is

shown below for the acetylcholinesterase data.

Each set shows a slightly different distribution of standard deviations, with

the test set being the lowest, external validation set compounds shifted

slightly to the right and random set the highest. This suggests the model

understands which fingerprints are closest to the test data, and which are

dramatically different – resulting in increased uncertainties.

Quantification of uncertainty is considered one of the biggest challenges

required for NGRA to succeed. The Bayesian learning models presented

here provide the desired uncertainty values that can be fed into an NGRA

procedure or a quantitative adverse outcome pathway for the safety

evaluation of a novel chemical.

Understanding Uncertainty

Average MAE and R2 values are shown in the table below for the held out

Test and External Validation data sets.

Overall, the best performing models for each MIE have produced MAEs

within one log unit on both the test and external validation data. A decrease

in model performance on moving from the test to external validation data is

expected, and this is observed. Of the 21 cases studied, eight show

external validation R2 values greater than 0.4, suggesting similar

performance to the test set. Seven of these cases though show negative

R2, meaning these models are not predictive on these datasets when

compared to the mean activity of that dataset. This can be caused by small

external validation datasets containing molecules with a similar

experimental activity, and additional data may be able to assist with this in

future work. A graph of predicted vs experimental external validation values

is shown below for acetylcholinesterase, with 95% confidence intervals.

Quantitative Predictions
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Test Set Ext. Validation Set

MAE R2 MAE R2

Mean 0.621 0.572 0.943 0.128

St. Dev. 0.050 0.094 0.223 0.437
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