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Learning objectives

* Understand what Next Generation Risk Assessment (NGRA) is, and
how different computational models are used in NGRA to analyse
data, make predictions and help make safety decisions.

* Introduction to how models are used to estimate points of
departure (PODs) from in vitro concentration response data.

* Develop an understanding some of the challenges involved in
inferring PODs and what approaches can be used to address them.
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About me

Degree in Mathematics from the University of
Edinburgh

PhD in Applied Mathematics from the University of
Nottingham

Postdocs in Germany at the University of Freiburg
and the University of Heidelberg

Joined Unilever in 2014, hired as a mathematical
modeller

Science leader in Computational Toxicology




What is Next Generation Risk Assessment?

' An exposure-led, hypothesis driven risk assessment
approach that incorporates one or more NAMs to
ensure that chemical exposures do not cause harm to
consumers

Dentetal., (2018) Comp Tox 7:20-26
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nciples of NGRA from ICCR

The overall goal is a human safety risk assessment
The assessment is exposure led

The assessment is hypothesis driven

The assessment is designed to prevent harm

Following an appropriate appraisal of existing information
Using a tiered and iterative approach
Using robust and relevant methods and strategies

Sources of uncertainty should be characterized and documented
The logic of the approach should be transparently documented

Dentetal., (2018) Comp Tox 7:20-26
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Using a tiered approach to conduct risk assessments
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Different types of computational approaches used in NGRA

Physiologically-based
kinetic (PBK) modelling
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Dose response modelling
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Principles of model development and the wet-dry cycle

* What question do you want to answer?
 What information do you have available?

Problem

How does the model formulation
perform?
Does it describe the data

well?
Define model assumptions
o I Develop Develop and implement the model

Generate/curate relevant
data




Using models to estimate PODs
from concentration-response data
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Concentration-response data

Continuous variable

@
- 7 Example data types:
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General strategy to estimating PODs from data

Problem: We want to know:
o Does the chemical have an effect on our biomarker?

o At what concentration does this effect occur?

* Typical approach:
o Fit one or more models to the data
o Choose ‘best model’ based on fit

o Use the fitted model to estimate quantities of interest —e.g., PODs
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Parametric models

Hill function Normaldistribution
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* Main building blocks of the model:
o Measured data = Mean Response + Observational Noise
O y = f(x|C,0,Vpax h) T 7
* \Various parameters that need to be estimated from the data:
h
o f(x|C,0,Vinax, h) = Vinax +C
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Fitting models by maximising the Likelihood function

Formally, the likelihood is the probability of the data
given a parameter value.
However the data are fixed, so it should really be thought
of as function of the parameters:
o L(p) = P(D|p)
Often we actually work with the negative log-likelihood:
o -log(L(p))
To fit the model to data, we find parameters that
maximise the likelihood.
o This is the same as minimising the negative log-
likelihood.
Under certain conditions, this is equal to minimising the

sum of squared residuals, i.e., Z(Di — f(x;]C, 6, Vmax))2
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Comparing different model fits

Hill function Exponential Gain-loss model
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Model selection criteria

Fit all models (including FULL and NULL), uniess

et , BMD Analysis of an Endpoint -
prior information OneK);ZEIS InCiuge particuiar Six Steps

ALERT
Convergence? It is recommended to
consult a BMD specialist

No Observed Trend
Stop further ALLAIC >AICyy +2?
analysis

1. Choose BMR(s) and dose metrics to evaluate,

Have all models & RS Data not
model parameters amenable for BMD
been considered? modeling

For Nested Families, select the

e U 2. Select the set of appropriate models, set

parameter options, and run models

Establish the smallest AIC (AlICy,)
of all fitted models excluding the
FULL

3. Do any models adequately fit the data?

ALERT
AlCyq > AlCgy +2? It is recommended to

4. Estimate BMDs and BMDLs for the adequate models. Use lowest reasonable
consult a BMD specialist

Are they sufficiently close?

Model Averaging
software available?

5. Is one model clearly better than the others considering Consider combining
best fit and least complexity (i.e., lowest AIC)? BMDs (or BMDLs)

Select models that comply
Use all fitted models with
AIC £ AlCy;, +2

el Report Confidence Intervals
EFSA D ecision for selected models

Final Confidence

Interval from Model Use BMD (or BMDL) from the model with the lowest AIC

Averaging .
r nal
T ©e A a ySIS Final Confidence Interval using
) lowest BMDL and largest 6. Document the BMD analysis, including uncertainties, as outlined in reporting requirements.
EFSA, 2017, BMD Approach, Figure 8 BMDU

* Different decision trees are used for selecting the ‘best” model
e Key metric — Akaike Information Criteria (AIC)
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Akaike Information Criteria (AIC)

The AIC or ‘Akaike Information Criteria’ is a common metric for comparing different models

A naive approach would use the Likelihood to select a model —i.e., the model with small error
‘wins’

Generally speaking, the more complex a model (e.g., the more parameters) the more likely it is
that it will produce a very small error which is actually overfitting the data.

The AIC is defined as:
AIC = 2k — log(£(6))

(where L(8) is the likelihood and k is the number of parameters)

The preferred model is generally the one with the smallest AIC— it rewards ‘good fits’ while
penalising models that are overly complex (i.e., have a large number of parameters).

Note it is a relative measure used for comparing different models — the AIC says nothing about
whether a model fit is good in an absolute sense.

Another common model selection criteria is the Likelihood Ratio test — which can be used for
nested models.

BMDExpress2, for example, allows users to combined the LR test and AIC to select the best
model.



Akaike Information Criteria (AIC) Example

Model —log(£(6)) Number of AIC
parameters (p)

Gain-loss 17.2 4
Hill function 17.5 3
Polynomial 17.7 4
Linear 77.6 2 81.6
Exponential 86.5 3 92.5




Estimating the POD using the ‘best model’ fit
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There are several ways to define the BMR/BMD, but generally use:
* BMR = pcontror £ dcontror BMRE
(where the BMRf is a multiple of standard deviation of the control)
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Challenges of using parametric models

Overfitting?
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BIFROST: using non-parametric Bayesian inference to estimate
PODs

A B C

Doxorubicin ATF4 (24 hours) Troglitazone MMP (24 hours) Sulforaphane IL-8 (24 hours)
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bﬁ Hatherell et al., 2020, Identifying and characterizing stress pathways of concern for consumer safety in next generation risk assessment, Tox. Sci.
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Bayesian statistics - what and why

Frequentist probability

* What people are normally taught in school

* Basis for p-values and hypothesis testing

* Probability reflects the relative frequency at which an event occurs over
many repeated trials.

* Only really relevant when dealing with well-defined random
experiments

 Can’t use it to talk about the probability of a ‘parameter taking a certain
value’ or a ‘hypothesis being true’.

Bayesian probability: Thomas Bayes, 1701-1761
* Probability reflects the plausibility or belief in some event being true.
* Provides framework for updating plausibility based on available data.
* For example, can talk about the probability of a hypothesis being true,
or a parameter taking on a certain value.
* Key terms: credible interval, priors, posterior
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Bayesian statistics - what and why

Bayesian interpretation of probability
* Probability quantifies the plausibility of some event.

+ Bayes theorem:  [NTSNIRON. /
P(D|X)P(X
B — pxin) =~ )

P(D)
* Here, Dis the data and X is a random variable
* E.g., X-V__ parameter, D — experimental observations
* The key things are the likelihood, the prior and the posterior:
o Posterior: probability that V__, takes a certain value
o Likelihood: probability of the data, given V,__,
o Prior: probability reflecting initial assumptions V__,

o
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Example of using Bayesian inference

Example dose response data Hill function
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* Hill equation:
X
f(xIC, 0, Vinax) = Vinax x+ 0 +C

e (full Hill equation has exponent on x and 6 to obtain sharper curves)
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Example of a prior

Develop
* Have parameters 6, C, V,,,,, and o —need to be learned from the data

Prior for 0 (threshold value)

0.14
0.12
0.1
0.08 |
0.06 |

0.04 |

Probability density

0.02 |

0 2 4 6 8 10 12 14 16 18 20

0 value

Data
* Typically you only have the measured values that you are fitting to, but you

could incorporate prior knowledge (e.g. biologically plausible values) into the
prior.



Learning parameters from the data

* One things that’s important to know about Bayesian statistics is that
for most problemes, it is impossible to get an exact solution to the

posterior.

e Resort to using methods like Markov Chain Monte Carlo (MCMC) to

take random samples from the distribution.

Random samples of 8 (from posterior)

25
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Learning parameters from the data: prior vs posterior

\Y C 0

max

014

Prior
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0.08 —

Posterior
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0.02

0.011
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Red horizontal line indicates the ‘true’ value




Evaluating the dose response model

16 . 15
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0D2Fr
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* Bayesian models can be evaluated by comparing the predictive distributions to
the training data

* As with the frequentist approach, because you’re using a parametric approach
you have to fit multiple models to the data and decide which one is best
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Examples of Bayesian dose response tools

Pyfit2
Wellcome UPEI'I Research Wellcome Open Research 2017, 1:6 Last updated: 15 MAR 2017
'l) Check for updates
SOFTWARE TOOL ARTICLE

GED Hierarchical Bayesian inference for ion channel screening
dose-response data[version 2; referees: 2 approved]

Ross H Johnstone!, Rémi Bardenet?, David J Gavaghan!, Gary R Mirams1:3
1Computational Biology, Department of Computer Sciance, University of Oxford, Oxford, UK

2CNRS & CRIStAL, Université de Lille, Lille, France
ICentre for Mathamatical Madicine & Biology, School of Mathematical Sciences, University of Nottingham, Notinghanm, UK

Pyfit2



Non-parametric approaches

So far, our approach of:
1. Fit multiple candidate models, each of
which produce a limited range of shapes.
2. Choose the best model — use this to
estimate the POD.
 An alternative approach is to use one model
that is very flexible.
* Non-parametric approaches provide a way to
do this.
e Gaussian processes (GPs) are an example of
this — these allow you to describe different
shapes in a probabilistic manner.
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Example of using Gaussian Processes to fit data
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BIFROST: using non-parametric Bayesian inference to estimate
PODs

A B C

Doxorubicin ATF4 (24 hours) Troglitazone MMP (24 hours) Sulforaphane IL-8 (24 hours)
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Discussion

e Various different models are used in NGRA to help analyse data.

 Two key elements are using PBK models to estimate exposure and
concentration-response models to estimate PODs.

* Typically, multiple parametric models are used to fit the data, from
which the ‘best model’ can be used to estimate a POD.

* An alterative is to use non-parametric methods, like Gaussian
processes.

 While these may be more robust, they can be more
computationally complex and there is further go with their
acceptance from a regulatory perspective.
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