Beyond AOPs: A Mechanistic Evaluation of NAMs in DART Testing

Dr Predrag Kukic Science Lead Unilever Safety and Environmental Assurance Centre (SEAC)

ESTIV, 22/11/2022

Outline

> Unilever's approach: science-based safety

- > Overview of Unilever's NGRA Framework for DART
- > Biological coverage of the NGRA Framework for DART
- > Next steps, case studies / fit for purpose validation

Unilever Policy & Approach Safe & Sustainable Products without Animal Testing

We say use science. Not animals.

What we believe

How we do it

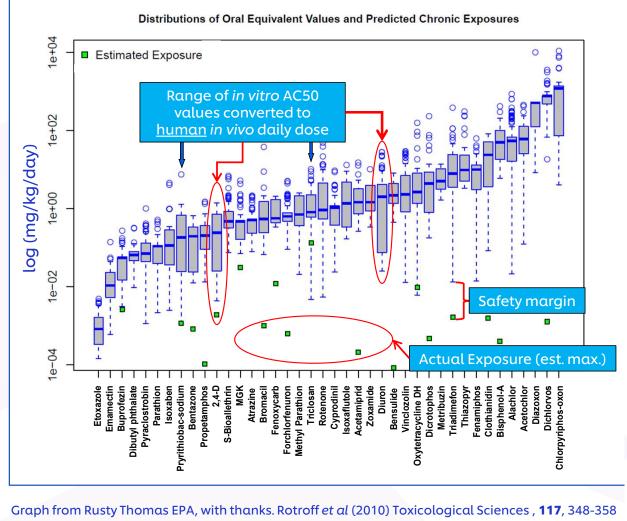
- Every Unilever product must be safe for people and our environment
- Non-animal testing to assess ingredient & product safety – there are a wide range of non-animal alternatives grounded in modern science and new technology

40+ years of developing non-animal safety science

70+ collaborations

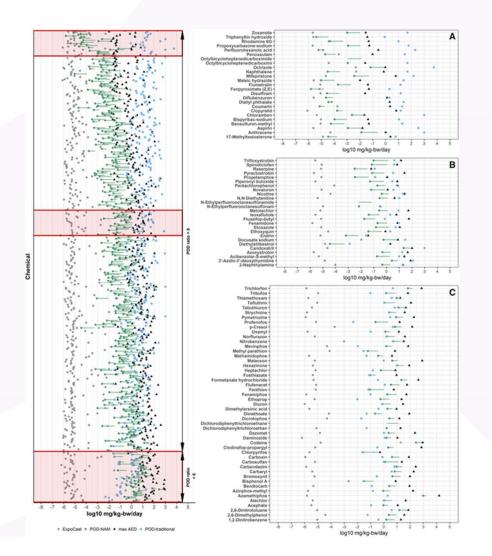
600+ publications https://tt21c.org

Unilose



Using 21st century science to assure safety – NGRA

Unilever


The hypothesis underpinning NGRA is that **if no bioactivity is observed at consumer-relevant concentrations, there can be no adverse health effects.**

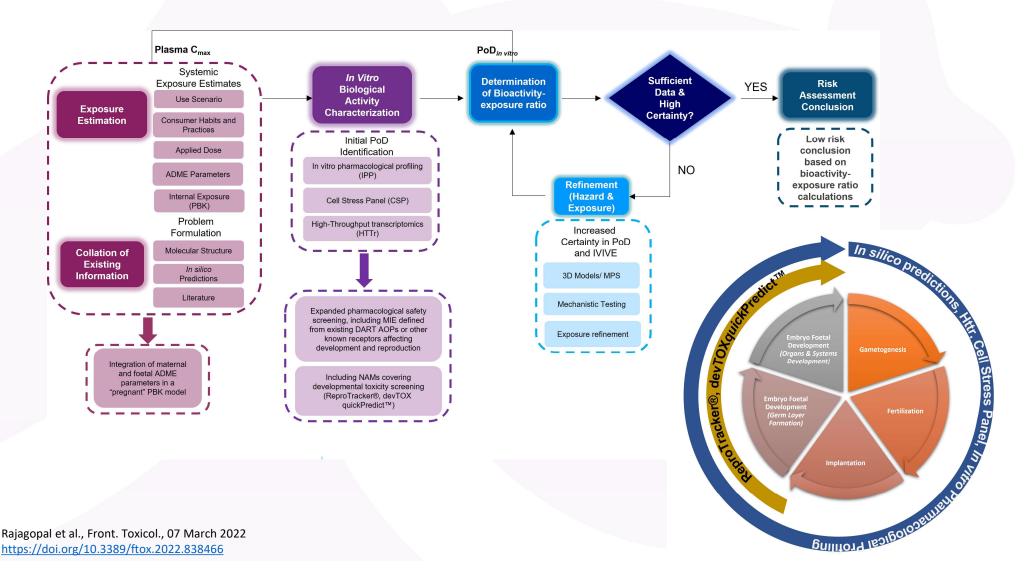
At no point does NGRA attempt to predict the results of high dose toxicology studies in animals.

NGRA uses new exposure science and understanding of human biology.

How PODs from NAMs compare to PODs coming from animal studies -including chronic, developmental/reproductive studies

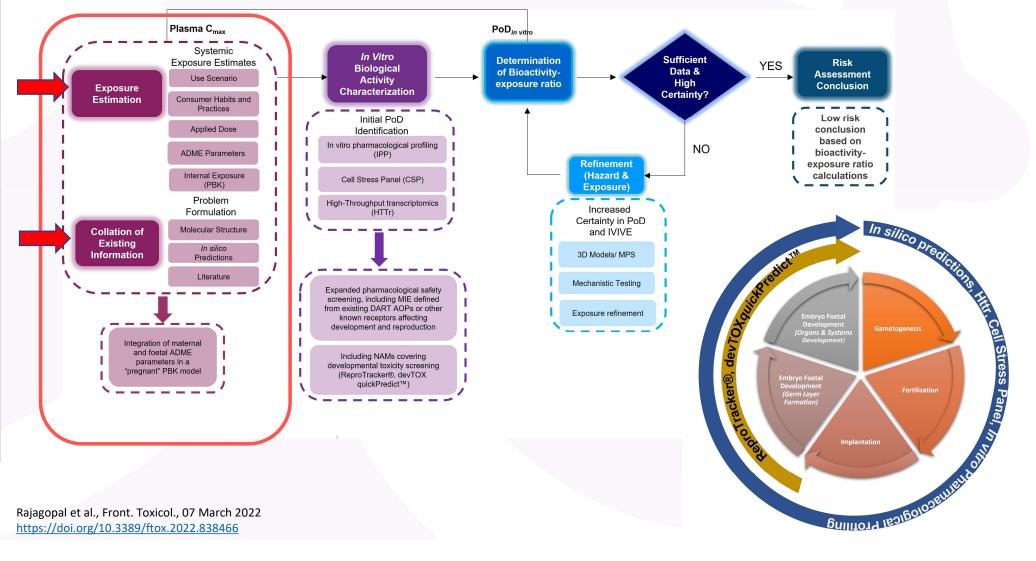
Unilower

448 chemicals

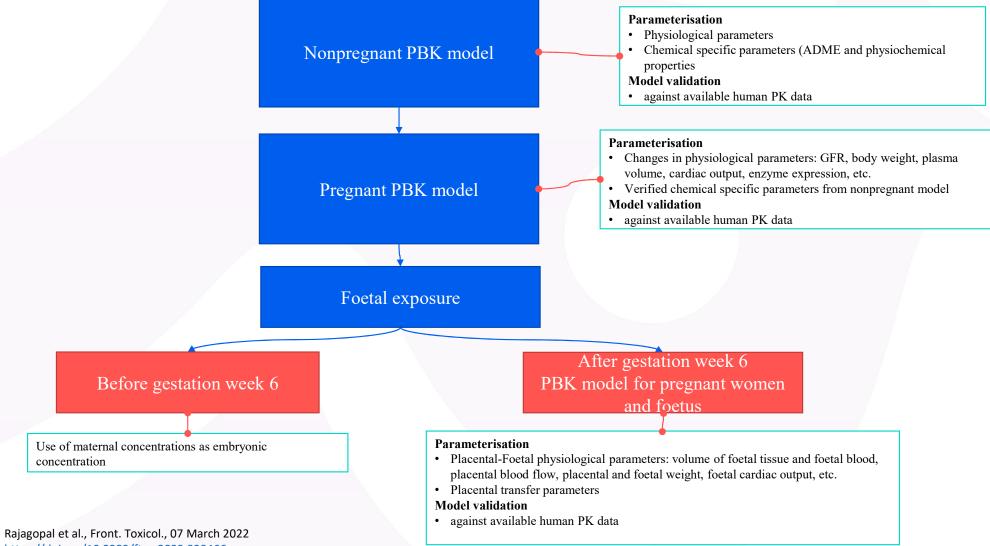

"The primary conclusion of our work is that for 89% of the chemicals in this case study, the HTS approach to derivation of a POD_{NAM, 95} for screening and prioritization purposes produced a value less than or equal to the POD_{traditional} from *in vivo* toxicology studies."

Toxicol Sci, Volume 173, Issue 1, January 2020, Pages 202–225, https://doi.org/10.1093/toxsci/kfz201

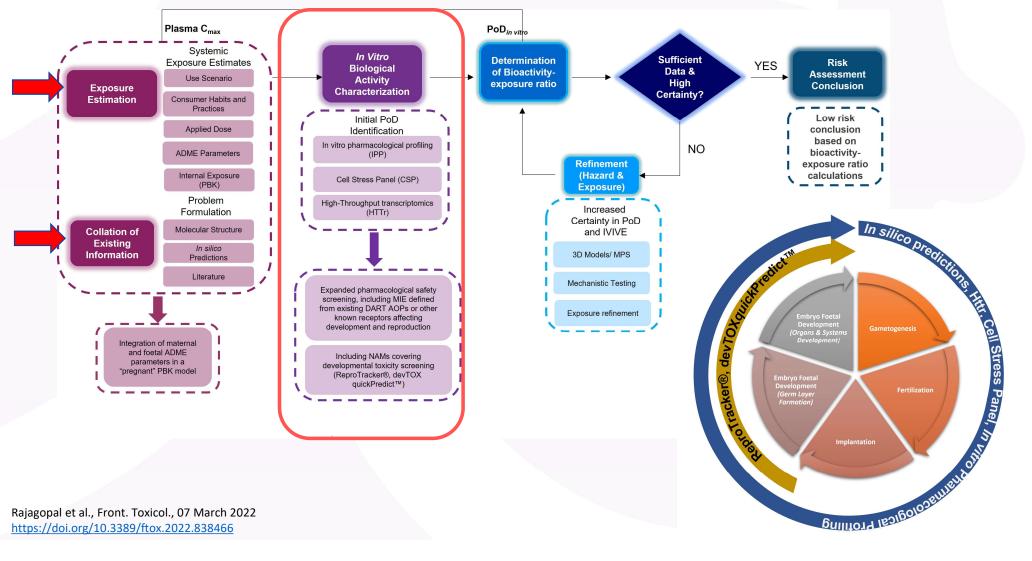
Unilever's Framework for NGRA DART


Unilever's NGRA Framework for DART – tiered approach

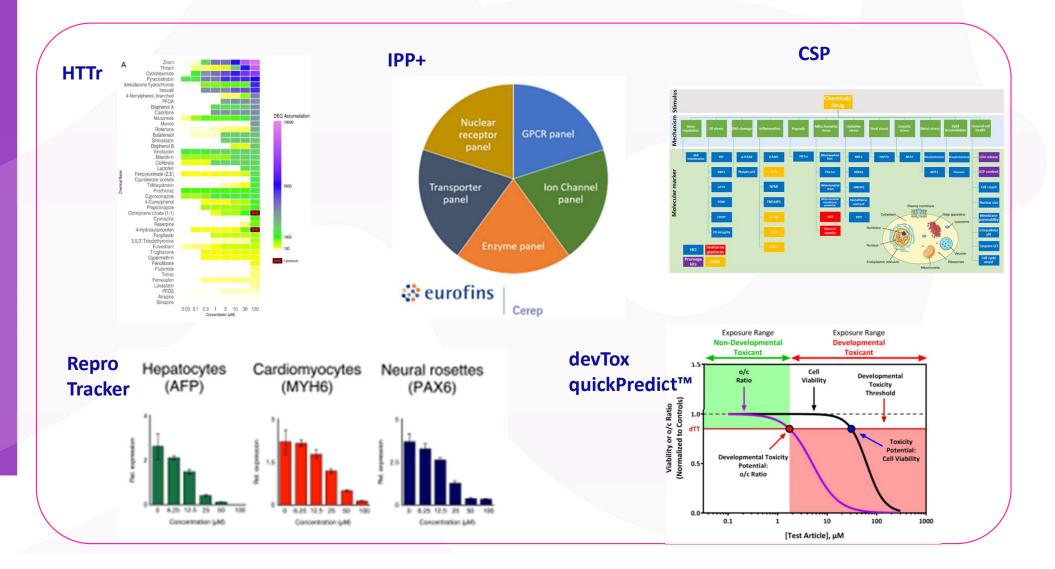
Unilever


Rajagopal et al., Front. Toxicol., 07 March 2022 https://doi.org/10.3389/ftox.2022.838466

Unilever's NGRA Framework for DART - exposure


https://doi.org/10.3389/ftox.2022.838466

Systemic exposure estimates-pregnant PBK modelling

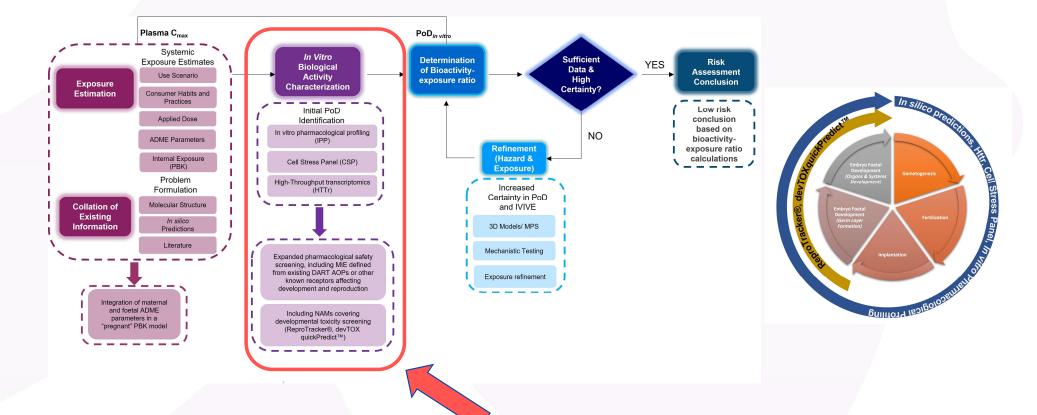

https://doi.org/10.3389/ftox.2022.838466

Unilever's NGRA Framework for DART - exposure

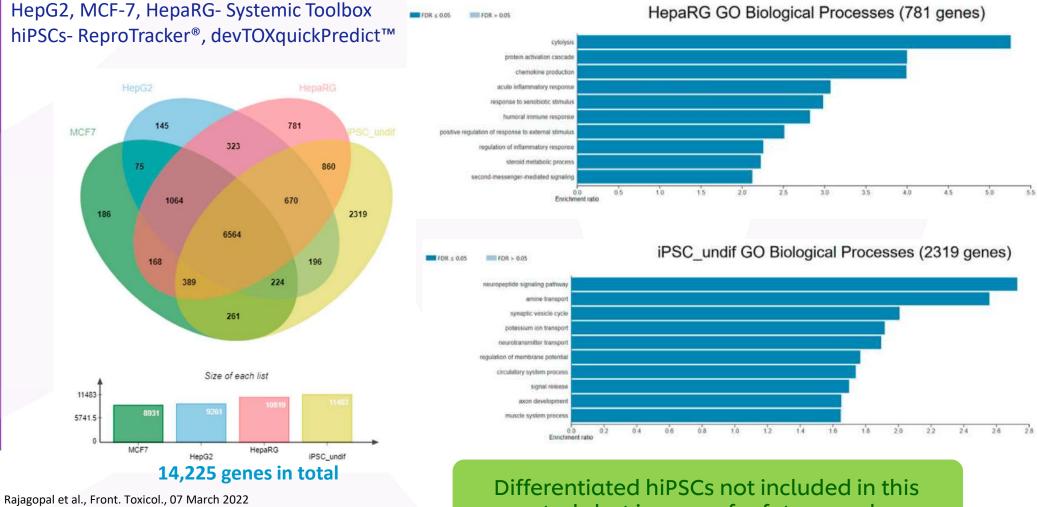
Rajagopal et al., Front. Toxicol., 07 March 2022 https://doi.org/10.3389/ftox.2022.838466

Unilever's NGRA Framework for DART – biological activity

Scientific and Technical Challenges associated with NGRA


- Metabolic capacity of the framework (cell models, MPS, alginate technology, etc.)
- > Short duration exposures and extrapolation to chronic effects
- Complex data interpretation and uncertainty analysis
- Spatio-temporal complexity of developmental and reproductive processes
- Coverage of important cellular and intercellular processes
- Chemical domain of applicability / case studies need for a flexible and fit for purpose validation

Biological coverage of the NGRA Framework for DART


What is the biological coverage of the NGRA DART Framework?

Does the Bioactivity Characterisation cover for important cellular and intercellular processes?

Rajagopal et al., Front. Toxicol., 07 March 2022 https://doi.org/10.3389/ftox.2022.838466

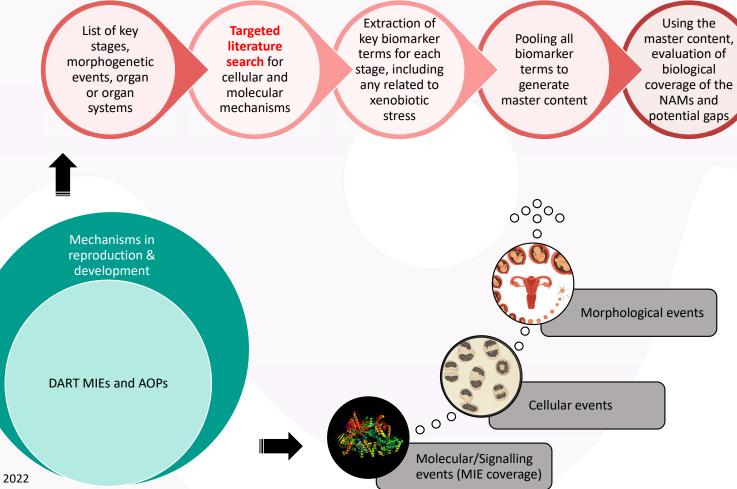
Baseline expression of the cell lines within the NGRA DART

https://doi.org/10.3389/ftox.2022.838466

Unilever

study but in scope for future work

Key Biomarkers for DART - Systematic literature search


Chemicals & assays based approach

- ReproTect (10 chemicals, 14 assays)
- ChemScreen (12 chemicals, 31 assays)
- ReproTracker®
- devTOXquickPredict[™]
- ToxCast

AOPs based approach

- Eleven DART-related Adverse Outcome Pathways (AOPs) published in 2015
- Over 90 AOPs in AOPWiki related to DART
- Network AOPs

Unilever

Rajagopal et al., Front. Toxicol., 07 March 2022 https://doi.org/10.3389/ftox.2022.838466

Key Stages, Morphogenetic Events and Derivatives Organs & Systems in Human Reproduction and Development

Sex determination

Gametogenesis

Fertilization

Zygote formation

Implantation

Blastulation

Gastrulation

Placenta formation

Neurulation

Ectoderm formation and its derivatives

- Central nervous system
- Peripheral nervous system
- Autonomous nervous system
- Integumentary system

Mesoderm formation and its derivatives

- Somitogenesis
- Hematopoiesis
- Heart and circulatory system
- Immune system
- Spleen
- Urinary system and urethra
- Reproductive system testis
- Reproductive system ovary
- Skeletal system
- Limbs

Endoderm formation and its derivatives

- Digestive system
- Respiratory system
- Thymus
- Parathyroid
- Thyroid

Structures developing from mesenchyme or multiple germ layers

- Adrenal glands
- Eyes
- Ears
- Face and neck

Intrauterine growth

Overview of Literature Search and Extraction of Key Markers Information

Pooling extractions, Thresholding of hit counts

Semantic enrichment using HGNC, miRNA and biological processes ontologies

Abstracts extracted and collated

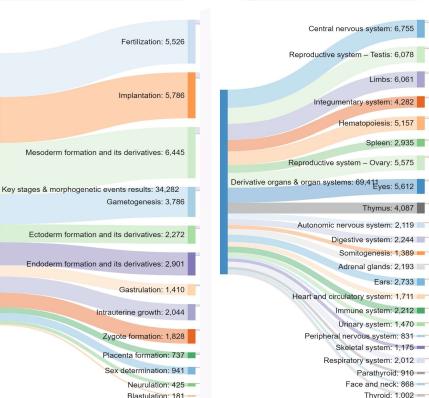
Summary

Limbs: 6.061

Spleen: 2,935

Thymus: 4,087

Ears: 2,733


Thyroid: 1,002

69,299 articles on

organs and organ

systems development

PAXIP1 Potentiates the Combination of WEE1 Inhibitor AZD1775 and Platinum Agents in Lung Cancer The DNA damage response (DDR) involves a complex network of signaling events mediated by modula protein domains such as the BRCA1 C-terminal (BRCT) domain. Thus, proteins that interact with BRCT domains and are a part of the DDR constitute potential targets for sensitization to DNA-damaging chemotherapy agents. We performed a pharmacologic screen to evaluate 17 kinases, identified in a BRCT-mediated interaction network as targets to enhance platinum-based chemotherapy in lung cancer. Inhibition of mitotic kinase WEE1 was found to have the most effective response in combinat with platinum compounds in lung cancer cell lines. In the BRCT-mediated interaction network, WEE1 was found in complex with PAXIP1, a protein containing six BRCT domains involved in transcription and in the cellular response to DNA damage. We show that PAXIP1 BRCT domains regulate WEE1-mediated phosphorylation of CDK1. Furthermore, ectopic expression of PAXIP1 promotes enhanced caspase-3mediated apoptosis in cells treated with WEE1 inhibitor AZD1775 (formerly, MK-1775) and cisplatin compared with cells treated with AZD1775 alone. Cell lines and patient-derived xenograft model expressing both PAXIP1 and WEE1 exhibited synergistic effects of AZD1775 and cisplatin. In summary PAXIP1 is involved in sensitizing lung cancer cells to the WEE1 inhibitor AZD1775 in combination with platinum-based treatment. We propose that WEE1 and PAXIP1 levels may be used as mechanism-based biomarkers of response when WEE1 inhibitor AZD1775 is combined with DNA-damaging agents.

34,308 articles on key stages and morphogenetic events

103,607 total articles

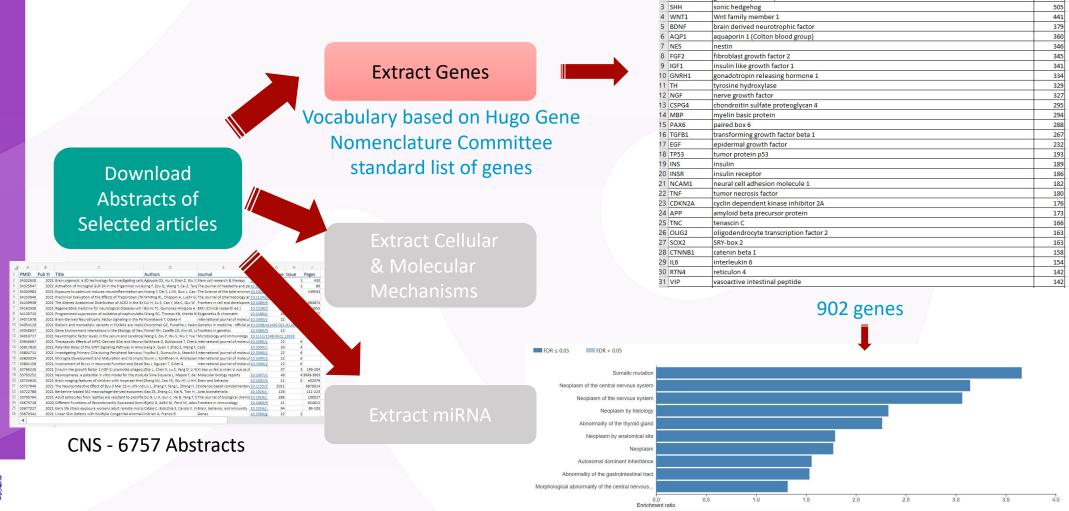
Query run: ("CNS") AND (embryonic development OR fetal development) AND (cell physiology OR nervous system physiology) OR (signalling OR pathway OR gene OR protein) AND (human OR mammalian) NOT (infections)

Literature search

MeSH Ontology

37 million Articles

Validation and


quality check of

results; finalising

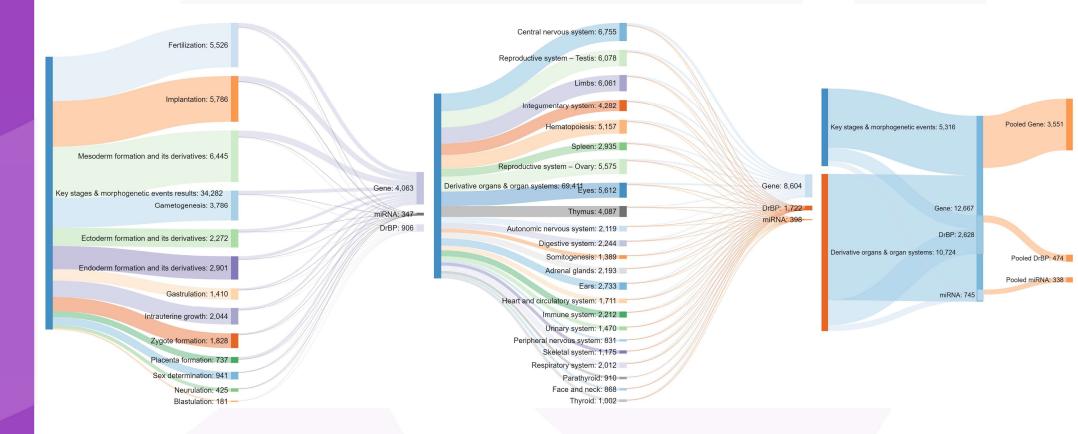
the articles

Unilower

Overview of Literature Search and Extraction of Key Markers Information

Unilever

Gene symbol Name


glial fibrillary acidic protein

Human Phenotype Ontology

C HitCount

554

Pooled List of DARS biomarkers

Rajagopal et al., Front. Toxicol., 07 March 2022 https://doi.org/10.3389/ftox.2022.838466 Rajagopal et al., Front. Toxicol., 07 March 2022 https://doi.org/10.3389/ftox.2022.838466

Pooled List of DARS biomarkers

3551 DARS Genes

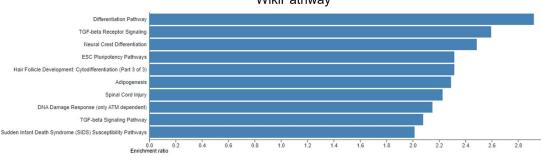
474 DARS Biological Processes

338 DARS miRNA

1	A	В	C
1	Gene symbol	Name	HitCount
2	CGA	glycoprotein hormones, alpha polypeptide	11924
3	SHH	sonic hedgehog	6622
4	WNT1	Wnt family member 1	6428
5	TGFB1	transforming growth factor beta 1	6056
6	IGF1	insulin like growth factor 1	4556
7	INS	insulin	4395
8	GNRH1	gonadotropin releasing hormone 1	3943
9	CTNNB1	catenin beta 1	3912
10	VEGFA	vascular endothelial growth factor A	377
11	SRY	sex determining region Y	3479
12	POMC	proopiomelanocortin	3454
13	EGF	epidermal growth factor	3396
14	KIT	KIT proto-oncogene receptor tyrosine kinase	3380
15	POU5F1	POU class 5 homeobox 1	3307
16	CD4	CD4 molecule	3152
17	PAX6	paired box 6	3124
18	LIF	LIF, interleukin 6 family cytokine	3070
19	BMP4	bone morphogenetic protein 4	302
20	CD34	CD34 molecule	302
21	ESR1	estrogen receptor 1	2946
22	SOX9	SRY-box 9	2649
23	TNF	tumor necrosis factor	2620
24	TP53	tumor protein p53	2520
25	PTHLH	parathyroid hormone like hormone	2430
26	AMH	anti-Mullerian hormone	2431
27	NR5A1	nuclear receptor subfamily 5 group A member 1	2341
28	IGF2	insulin like growth factor 2	2290
29	LEP	leptin	2058
30	AKT1	AKT serine/threonine kinase 1	1977
31	FGF2	fibroblast growth factor 2	1912

1	A	В	С
1	HitID	Name	HitCount
2	GO_0023052	signaling	21733
3	GO_0007049	cell cycle	3228
4	GO_0008219	cell death	2514
5	GO_0006306	DNA methylation	2440
6	GO_0001837	epithelial to mesenchymal transition	2422
7	GO_0016310	phosphorylation	2372
8	GO_0030154	cell differentiation	2262
9	GO_0048468	cell development	2248
10	GO_0001556	oocyte maturation	1973
11	GO_0022008	neurogenesis	1567
12	GO_0006412	translation	1541
13	NCIT_C17741	Oxidative Stress	1449
14	GO_0048477	oogenesis	1243
15	GO_0001171	reverse transcription	1235
16	GO_0016477	cell migration	1209
17	GO_0007165	signal transduction	1146
18	GO_0030218	erythrocyte differentiation	1134
19	GO_0016049	cell growth	1041
20	GO_0006914	autophagy	1021

	A	В	
1	HitID	HitCount	
2	LET7	155	
3	MIR-21	127	
4	MIR-145	85	
5	MIR-125B	73	
6	MIR-17	73	
7	MIR-17-92	65	
8	MIR-1	64	
9	MIR-302	62	
10	MIR-124	56	
11	MIR-29B	55	
12	MIR-34C	52	
13	MIR-34A	51	
14	MIR-130B	51	
15	MIR-375	49	
16	MIR-200C	46	
17	MIR-24	45	
18	MIR-29A	44	
19	MIR-429	41	
20	MIR-223	41	



Rajagopal et al., Front. Toxicol., 07 March 2022 https://doi.org/10.3389/ftox.2022.838466

Rajagopal et al., Front. Toxicol., 2022

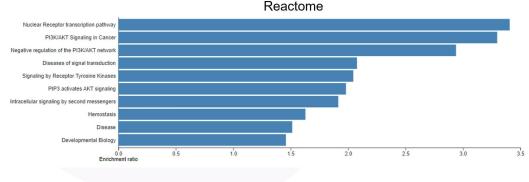
Protein classes and signalling pathways over-represented in DARS biomarkers

PANTHER PROTEIN CLASS expected in DARS 500 450 Number of proteins 400 350 300 250 200 150 100 50 0 mentrate bound as aling note the ally thread the state of the st welly toophely tonset pion actor unogouth to transcription factor base and the top of the table the table to the table to the table top of tab Intercentral sea molecule extractive native poten ecific transcriptional regulator protease inhibitor dranschelon factor arsnerbanessealeceptol protein notifing endme meterkin superaruh HMG POX TRANSCIPTION FECTO peptide hormon 1Forkhead*

 Panther

 TGF-beta signaling pathway
 Image: CKR signaling case-add

 CCKR signaling map
 Image: CKR signaling pathway

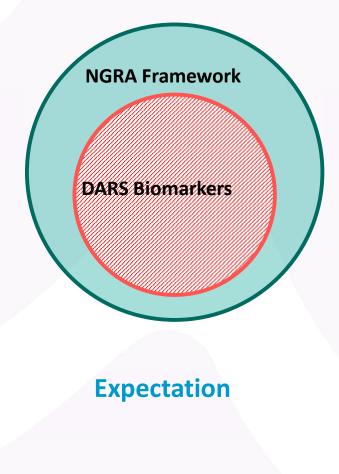

 T cell activation
 Image: CKR signaling pathway

 Apoptosis signaling pathway
 Image: CKR signaling case-add

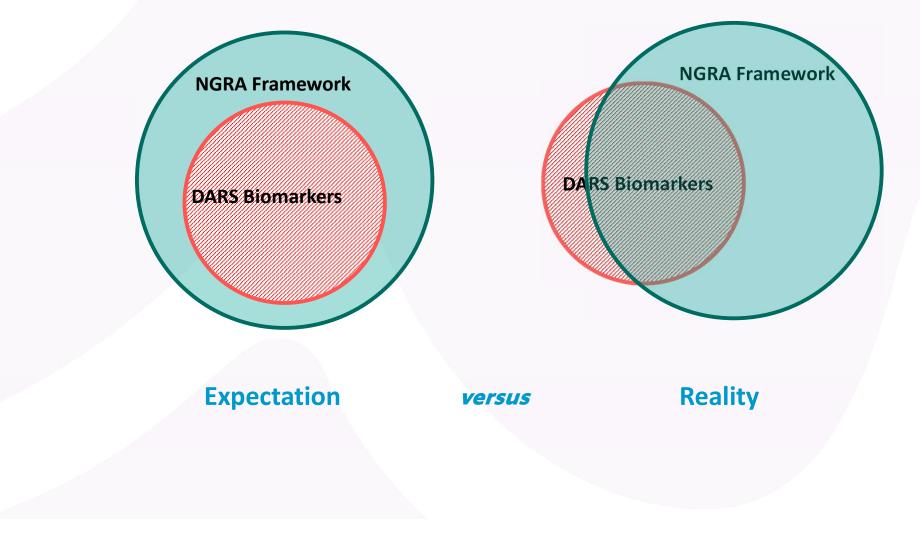
 Mapoptosis signaling case-add
 Image: CKR signaling case-add

 Mapoptosis signaling case-add
 Image: CKR signaling case-add

 Mapoptosis signaling case-add
 Image: C

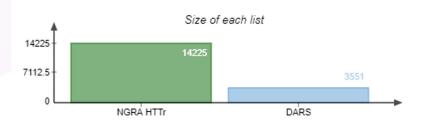


DARS BP: Signalling, cell cycle, cell death, DNA methylation, epithelial to mesenchymal transition, phosphorylation, cell differentiation, cell development, oocyte maturation and neurogenesis

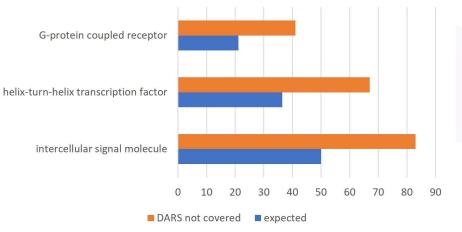

DARS miRNA: LET-7, MIR-21 and MIR-145

Unilever

Rajagopal et al., Front. Toxicol., 2022



NGRA HTTr DARS 11495 2730 821


Coverage

Unilever

Rajagopal et al., Front. Toxicol., 07 March 2022 https://doi.org/10.3389/ftox.2022.838466 Gaps - Panther Protein Classes

Gaps

- 41 GPCRs (6 present in IPP)
- 60 HTH transcription factors (mainly homeobox transcription factors)
- Intercellular signal molecules (chemokines, cytokines, growth factors, neurotropic factors, peptide hormones)

Rajagopal et al., Front. Toxicol., 2022

Coverage

General cellular & functional processes- cell survival, cytotoxicity

Receptor or enzyme activity-IPP covers about 13%

Signalling pathways- DARS genes

Specific differentiation-ReproTracker®

Specific cellular processesdevTOXQuickPredict[™]

Cellular stress- Cell stress panel assays

Gaps

Specific cellular processes-E.g. cytokine secretion or myelination or androgen biosynthesis

Specific functional processes- E.g. sperm motility or axon guidance or lymphocyte migration

Receptor or enzyme activity-E.g. receptor tyrosine kinases or receptor serine/threonine kinases or GPCRs

Weight of evidence

Integrating data from different NAMs

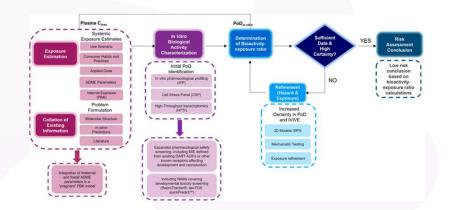
MIE -> KEs -> Adverse effects E.g. ADORA 2A binding, inhibition of PI3Kinase-AKT signalling, T cell development

Rajagopal et al., Front. Toxicol., 2022

Case studies - flexible and fit for purpose validation of

NGRA DART

How PODs from NAMs compare to PODs coming from animal studies



Health Canada: "The purpose of this SciAD is to demonstrate that PODBioactivity can provide a lower bound estimate for in vivo based effect levels derived from oral repeat-dose, developmental, and reproductive studies considered under the Chemicals Management Plan (CMP). The PODBioactivity was lower than the lowest PODTraditional cited in the risk assessment for 43 of the 46 of the chemicals examined. These findings are consistent with other published case studies using similar methodology. This was done to demonstrate confidence in using in vitro bioactivity as a surrogate lower bound estimate of in vivo adverse effect levels. "From Health Canada

Unilower

Next Steps

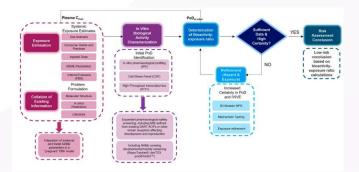
- Evaluation of DART NGRA across many chemistries
- ReproTracker assay
 - Development and evaluation of an osteoblast differentiation protocol

Rajagopal et al., Front. Toxicol., 2022

- Identification and filling of existing gaps (PBK modelling e.g placenta transfer measurements, DNT, DIT, endocrine disruptors, multigenerational effects, studying epigenetics in germline development, advanced cell models for refinement)
- CLP/GHS hazard classification
- > Use for regulatory purposes (REACH submission)

Unilever NGRA frameworks for Consumer Safety decisions

Inhalation

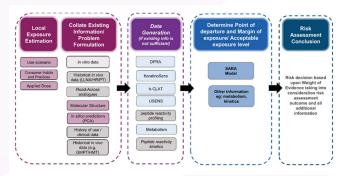

Pr E

Use scenario Consumer Habits and Practices Particle Size Distribution

Tier 2 - in silico

Systemic

Developmental & Reproductive



Collate Existing Information/ Problem Formulation Exposure* Hazard data Acute on Connect

ation/	Data Generation	Determine Point of Departure and Margin of	Risk Assessment Conclusion
rd data	Acute and Chronic	Exposure / BER	
ecular ucture silico ons (PCA)	ALI Upper Airway (Intation, remodelling, clearance mechanism dysfunction, inflammation)	Exposure based waiving	Risk decision based upon
n content	ALI Lower Airway (Lung Fibrosis, inflammation)	DNEL derivation Chemical Sensitiser	Weight of Evidence
ig in vivo lata	Lower Airway (Macrophage clearance, biopersistency, surfactant disruption)	I benchmarking I I I In vitro concentration- response modelling	
	Microphysiological Systems		\/
	`~'		
i			

Rajagopal et al (2022) Frontiers in Toxicology, doi: 10.3389/ftox.2022.838466

Skin Sensitisation

Reynolds et al (2021) Reg Tox Pharmacol, **127**, 105075

	Local and systemic	Manager and American	insufficient		PoDinvite	Bufficient	
	exposure estimates 1	In Vitro	data and high		Determine	data and high	Risk
	Use scenario	Biological	uncertainty	Metabolism	Margin of	certainty	Assessment
Exposure	Consumer Habits	Activity		refinement	Exposure		Conclusion
Estimation	and Practices	Characterization			A. Standard Contractor		Conclusion
<u> </u>	Applied Dose	Initial PoD	N 1	Increased			Lowrisk
	ADME	identification	1 1	certainty in PoD		1	conclusion
	parameters	ToxTracker	1 1	and NVE		1	based on the
	Internal	Contraction of the second	1	Metabolite		1	margin of
	Exposure (PBK)	SafetyScreen448	i (identification		1	safety calculations.
	Problem	BioMapD	i (3D Models			
	Formulation	Diversity & Panel	i .	and and a second second			
Collate	Molecular						
Existing	Structure	Cell Stress Panel	÷ .				
Information	In silico	HTTr-TempO-					
And a second state of the	Uterature	Seq					

Baltazar et al (2020) Toxicol Sci, 176, 236-252

Ongoing Evaluations

Environmental Topics 🗸	Laws & Regulations ∨	Report a Violation \checkmark	About EPA 🗸	
News Releases: Headquarters	esearch and Development (OR	D)		CONTACT
Collaboration	i vo martante			
Approaches	for Chemica	II RISK ASSE	essment	
August 19, 2021	for Chemica	II KISK ASSE	essment	
August 19, 2021 Contact Information	for Chemica	II KISK ASSE	essment	
August 19, 2021	for Chemica	II RISK ASSE	essment	
August 19, 2021 Contact Information				ent to explore
August 19, 2021 Contact Information EPA Press Office (press@epa.goz/)	vironmental Protection Agency (I	EPA) and Unilever announced	a collaborative agreem	
August 19, 2021 Contact Information EPA Press Office (press@epa.goz/) WASHINGTON - Today, the U.S. Err	vironmental Protection Agency (s associated with consumer prod	EPA) and Unilever announced lucts. This agreement builds o	a collaborative agreem	ween EPA and
August 19, 2021 Contact Information EPA Press Office (press/lepa.goz) WASHINGTON – Today, the U.S. Err better ways to assess chemical risk	vironmental Protection Agency (s associated with consumer prod fethods (NAMs), which are a pror	EPA) and Unilever announced lucts. This agreement builds o	a collaborative agreem	ween EPA and
August 19, 2021 Contact Information EPA Press Office (press/lepa, goz/ WASHINGTON – Today, the U.S. Err better ways to assess chemical risk Unilever regarding New Approach I	vironmental Protection Agency (s associated with consumer prod dethods (NAMs), which are a pror mals.	EPA) and Unilever announced fucts. This agreement builds o mising alternative to conventio	a collaborative agreem n prior cooperation bet onal toxicity testing tha	ween EPA and t are intended

*EPA is a pioneer in developing and applying HMAs to identify and quantify risks to human health, while reducing the use of animals in chemical toxicity testing," and H. Christopher Frey, Deputy Assistant Administrator for Science Policy in EPA's Office of Research and Development. "We are excited to continue the collaboration with Unilever, which enhances the robustness of our mutual research to demonstrate the use of MMAs."

The new collaborative effort aims to establish a framework for the Next Generation of Risk Assessments based on NAMs. Such assessments are interded to quantify health risks to humans with sufficient scientific rigor to replace conventional animal-based methods and to support FPNs mission to protect human health and the environment.

National Toxicology Program

NICEATM News - 2021 Issue 25: May 27

In this Newsletter:

NICEATM to Collaborate with Unilever on Development of Predictive Model for Skin Sensitization

NICEATM to Collaborate with Unilever on Development of Predictive Model for Skin Sensitization

NICEATM has entered into an agreement with consumer products company lunieers to collaboratively test and further develop their Skin Jallery Risk Assessment (SARA) predictive model. SARA is a computational model that uses a variety of input data to estimate a probability that a chemical will cause an allergic skin reaction in humans. NICEATM will test the SARA model using a variety of chemical data sets, including chemicals of interest to U.S. and international regulatory agencies. NICEATM and Unilever will also work together to expand the SARA model to include data generated by NICEATM. The intent is to make the SARA model openly available for public use along with other NICEATM predictive models. Availability of the SARA model will help further reduce animal use for the endpoint of skin sensitization, and will improve upon existing efforts by providing points of departure for quantitative human risk assessment.

Information about other NICEATM projects to evaluate alternatives to animal use for skin sensitization is available at <u>https://ntp.niehs.nih.gov/go/ACDtest</u>.

Reference: <u>Revnolds et al</u>, Probabilistic prediction of human skin sensitizer potency for use in next generation risk assessment. Comput Toxiol 9:36-49. <u>https://doi.org/10.1016/i.comtox.2018.10.004</u>

SEAC SAFETY & ENVIRONMENTAL ASSURANCE CENTRE Scientific Excellence And Collaboration

Acknowledgments

Unilever

Maria Baltazar, Elin Barrett, Danilo Basili, Paul Carmichael, Mathew Dent, Julia Head, Jade Houghton, Hegun Li, Alistair Middleton, Iris Müller, Gopal Pawar, Katarzyna Przybylak, Ramya Rajagopal, Joe Reynolds, Kritika Sadh, Wendy Simpson, Sandrine Spriggs, Andrew White, Katy Wilson, Kathryn Wolton

TT21c.org:

laver-		۹ 🔳

Access publications, presentations and posters on our 21st century safety sciences produced by SEAC scientists, and also in collaboration with our scientific partners

Learning Materials