Case studies: application of non-animal approaches to assess food ingredients

Dr. Sara Levorato

2020 Summer Meeting

Introduction

 Overview of food ingredients safety dossiers submitted to EFSA or FDA

- Non-animal approaches (NAMs) were used:
 - Successfully with newly generated in vivo data adding little to the WoE approach
 - Unsuccessfully additional data required (not necessarily animal data)

Egg membrane hydrolysate

- · Identity of the food: a protein-based powder. Its main constituents are elastin, collagen and glycosaminoglycans derived from chicken eggs.
- Proposed use: food supplement.

New Dietary Ingredients (NDI) Notification (2009)

Novel Food

Submission (2016)

Key points

 A full toxicological assessment was not provided by the applicant and not deemed necessary by EFSA.

Ingredient-specific in vivo data added little to the weight of evidence approach.

Egg membrane hydrolysate

- Identity of the food: a protein-based powder. Its main constituents are elastin, collagen and glycosaminoglycans derived from chicken eggs.
- Proposed use: food supplement.

Novel Food

Submission (2016)

Key points

 A full toxicological assessment was not provided by the applicant and not deemed necessary by FDA and EFSA.

Ingredient-specific in vivo data added little to the weight of evidence approach.

Mung bean protein isolate

- Identity of the food: powder from mung beans (Vigna radiata) (>80% protein)
- Proposed use: direct protein replacement of animal- or vegetable-based protein.

Key points

- The applicant stated that product-specific in vivo toxicity studies were not necessary for the safety assessment.
- No additional toxicological data requested by FDA.

Ingredient-specific in vivo data did not provide any additional information

Soy leghemoglobin

- Identity of the food: leghemoglobin from soy (Glycine max) expressed in yeast (Pichia pastoris).
- Proposed use: food ingredient in meat-replacement products as iron source.

28-day rat oral toxicity

Key points

 The history of consumption of hemoglobin proteins in food together with the NAM data provided clear evidence to make a determination of safety.

Conclusion could have been based on comparison with other haemoglobin/overall protein intake rather than NOAEL from in vivo tox study.

Orthosilicic Acid – Vanillin Complex (OSA-VC)

- Identity of the food: complex composed of orthosilicic acid [Si(OH)₄] and vanillin linked by weak hydrogen bonds.
- Proposed use: food supplement as a source of silicon (Si).

Key points

- In vivo/vitro studies on OSA-VC had severe limitations due to the technical difficulties with the solubility and dosing of the substance.
- Nevertheless, no additional toxicological data were required for the complex by EFSA

Ingredient-specific in vivo study could be considered unnecessary

· Identity of the food: mixture of glucosylated steviol glycosides, containing 1-20 additional glucose units bound to the parent steviol glycoside

• Proposed use: sweetener

existing in vivo data, not generated for the intended assessment

GRAS Notification (2016)

Food Additive Application (2018)

Key points

- * EFSA rejected the read-across approach because the common metabolic pathway could not be proved
 - · Complete hydrolysis was not demonstrated in one study
 - Full study data from (incl. test material characterisation) were not provided by the applicant

Read-across needs to be properly substantiated

Ingredient-specific in vivo study can be considered unnecessary

Naringenin

• Identity of the food ingredient: obtained via extraction and subsequent hydrolysis of *naringin* from grapefruits.

• Proposed use: flavouring substance

ADME

Genotoxicity

Safety dossier

Systemic toxicity

Read across with naringin: not applicable

Data gap: the metabolic fate in humans is largely unknown (human + *in vitro* data)

Ames and in vitro MN data: not reliable

Read across with quercetin and naringin: not applicable

Read across with naringin: not applicable

Non-animal approaches

Key points

Flavorings Submission (2017)

- Read-across between naringenin and naringin or quercetin was considered not applicable
- EFSA could not reach a conclusion as to the safety of naringenin since the available data on genotoxicity are not adequate.

Read-across needs to be properly substantiated

Conclusions

- Food ingredient safety assessment requires a different and more flexible approach with respect to that traditionally used for chemical entities.
- A case-by-case approach is needed which must be adapted to take account of the characteristics of the individual novel food
- As the occurrence of completely new chemical entities is unlikely to happen in the food space, this provides a unique opportunity for the use of non-animal methods in RA:
 - Chemical composition/characterisation
 - ADME
 - Exposure estimates
 - History of use
 - Read-across
 - Existing in vivo data
- Joint effort from regulators and industries in being more open and confident in <u>generating</u>, <u>considering</u> and <u>accepting</u> non-animal approaches for food risk assessment and management.

Acknowledgment

