Safety & Environmental Assurance Centre

Utilising membrane partitioning coefficients in physiologically-based kinetic modelling

Elin L. Barrett¹, Jayasujatha Vethamanickam¹, Alessia Giorgis¹, Alexandre Teixeira¹, Hegun Li¹, Thomas E. Moxon¹

¹ Safety and Environmental Assurance Centre, Unilever, Bedford, UK, MK44 1LQ

Introduction

- Log K_{ow} used as a surrogate to calculate tissue:plasma partitioning
- Tissue:plasma partitioning in turn used to parameterise physiologically-based kinetic (PBK) models [1], which predict the
- Log Kow struggles to describe partitioning into biological systems for large and charged molecules
- Here we present an application of $\log K_{MW}$ as an input for PBK modelling, and a comparison to use of $\log K_{OW}$ as an input.

PBK Modelling

Fig 1. A schematic of a simplified PBK model

Input

- Chemical properties (log Kow, pka etc.)
- Physiological properties (flow rate volumes)
- **ADME** properties

Outputs of interest

- Volume of distribution at steady state (V_{ss}), apparent volume of blood required to give the plasma concentration of a chemical, assuming no chemical is in other tissues
- Cmax, maximum plasma concentration after exposure

Method

- Literature review carried out to collect V_{ss} and
- log K_{MW} values were calculated using COSMOmic
- tissue:plasma partitioning compared:

Method	Description of partitioning
Schmitt [2]	Based on log K_{MW} and accounts for ionization during interactions with tissue constituents
Lukacova [3]	Based on log K_{OW} and accounts for ionisation during interaction with tissue constituents
Berezhkovskiy [4]	Based on log K _{OW} does not consider ionization in albumin binding

- partitioning calculated Additionally, C_{max} calculated, as this is the final output used most often in risk assessment

Results and Discussion

Method	R ² (Vss)	R ² (C _{max})
Schmitt	-0.48	0.09
Lukacova	0.49	0.15
Berezhkovskiy	-0.02	0.11

- The Lukacova method predicts the

Conclusions

- Results suggest that varying the equation used to estimate tissue:plasma partitioning does not have a significant impact on C_{max}, although it does affect V_{ss}
- Log K_{MW} could be used as an input for PBK rather than log K_{OW} for surfactants, where log K_{OW} is harder to obtain.

- [1] L. Kuepfer et al. CPT Pharmacometrics Syst Pharmacol. **2016,** 5(10), 516–531. [2] W. Schmitt, *Toxicol. In Vitro*, **2008**, 22(2),
- [3] V. Lukacova et al., General Approach to Calculation of Tissue:Plasma Partition
- (PBPK) Modeling, poster presented in 2008 [4] L. M. Berezhkovskiy, J. Pharm. Sci., 2004,