Making sure that NAM-based safety assessments are protective

Matt Dent

Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ;

Outline

- 1. Why do we have confidence that *in vivo-*based risk assessments are protective?
- 2. Can this inform our approach to NAM-based assessments?

Why are we confident that animal-based assessments are protective?

Familiarity Understand strengths and limitations

Regulatory guidance/precedent Safety decisions made by regulators; guidance on use of assessment factors etc.

Standardized protocols e.g. OECD TGs Important to remember that animal tests are not necessarily predictive of adverse health effects in people – but *used in a certain way* they are useful for making safety decisions

So how do we build confidence that NAM-based assessments are protective?

Familiarity Evaluating strengths and limitations of NAMs; training

Regulatory guidance/precedent Examples of NAMbased decision making

Standardized protocols

Agreed protocols, analysis and reporting standards, future of validation? Important to remember that *in vitro* tests are not necessarily predictive of adverse health effects in people – but *used in a certain way* they are useful for making safety decisions

So how do we build confidence that NAM-based assessments are protective?

Familiarity Evaluating strengths and limitations of NAMs; training

Regulatory guidance/precedent Examples of NAMbased decision making

Standardized protocols

Agreed protocols, analysis and reporting standards, future of validation? Important to remember that in vitro tests are not necessarily predictive of adverse health effects in people – but used in a certain way they are useful for making safety decisions

APRCA approach to evaluate the integration of exposure and bioactivity

Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization

Katie Paul Friedman (), *.¹ Matthew Gagne, [†] Lit-Hsin Loo, [‡] Panagiotis Karamertzanis, [§] Tatiana Netzeva, [§] Tomasz Sobanski, [§] Jill A. Franzosa, [¶] Ann M. Richard, * Ryan R. Lougee, ^{*,||} Andrea Gissi, [§] Jia-Ying Joey Lee, [‡] Michelle Angrish, ^{|||} Jean Lou Dorne, ^{||||} Stiven Foster, [#] Kathleen Raffaele, [#] Tina Bahadori, ^{||} Maureen R. Gwinn, ^{*} Jason Lambert, ^{*} Maurice Whelan, ^{**} Mike Rasenberg, [§] Tara Barton-Maclaren, [†] and Russell S. Thomas () *

- Evaluation of in vitro NAMs, exposure modelling and dose-response models.
- For 89% of the chemicals NAM PoD was more conservative than the traditional POD.
- Bioactivity:exposure ratios (BERs) approach useful for accelerate screening and assessment using NAMs for hazard and exposure.

Confidence in skin allergy NGRA- Unilever SARA Model

MCIMI Dec 21

MDBCN Deo 11

MDBGN Face cream 1000 ropyl gallate Lipstick 500 fisothiazolinone Deo 100 HICC Deo 15000 MCI/MI Face cream 8 MCI/MI Body lotion 30

IPBC Face of

IPBC Liquid hand soap 1 MDBGN Shower gel 10

Propyl paraben Body lot

MCI/MI Shower gel 15pp

10⁰ 10¹ 10² 10³ 10⁴ 10⁵ 10⁶ 10⁷ Margin of Exposure

Chemica Structure/ **Cellular Level** Organ Level Properties Covalen Dendritic Cell T-cell Activation Electrophilic Keratinocyte Skin **Binding to** and Proliferation Chemicals Activation Activation Sensitisati Skin Protein Key Event 1 (KE1 KE2 KE3 KE4 Adverse Outcome (AO) ,..... Keratinocyte DC Activation T Cell Skin Sensitisation Predictive Protein Proliferation Chemistry Reactivity Activation OECD TG 429: mouse local lymph OECD TG 442E node assay (LLNA) & variants DECD TG 442C OECD TG 442D Includes: For Example: For example TG442A & 442B h-CLAT DEREK-NEXUS Human T cell includes: cludes: IL-8 Luc Assay OECD QSAR ADRA KeratinoSens proliferation OECD TG 406: Buehler & Guinea U-Sens™ Toolbox DPRA LuSens assays (hTCPA Pig Maximisation Test (GPMT) •• TIMES • ToxTree Human evidence ····· e.g. Human Repeat Insult Patch Test (HRIPT) in silico NAM in chemico/vitro NAM in vivo evidence

Developing a risk assessment framework...

Bayesian computational model that integrates information from the historical data and NAMs

SARA Model published and collaboration with US Gov. group (NICEATM) to adapt the model for regulatory use.

A hypothetical skin sensitisation next generation risk assessment for coumarin in cosmetic products

G. Reynolds^{*}, J. Reynolds, N. Gilmour, R. Cubberley, S. Spriggs, A. Aptula, K. Przybylak, S. Windebank, G. Maxwell, M.T. Baltazar^{**}

Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK

NAMs mapped into the AOP

The key NAMs in our Systemic NGRA approach

Exposure and PoD are plotted and used to derive a Bioactivity-Exposure Ratio (MoE/BER)

Overview of the toolbox evaluation strategy

Can the toolbox correctly identify the risk classification?

Stage 4- Benchmark BER against risk category for each exposure scenario in Step 1

Centred 50% and 95% credible intervals summarising the distribution of the BER when using all available predicted C_{max} estimates. Background colours indicate the assigned risk category for each benchmark exposure (blue – low, orange – high).

Conclusion & Next steps

- The first step in building confidence that NAM-based assessments can be protective is to build familiarity – understanding the strengths and weaknesses of the technology
- Without evaluations like this NAM-based assessments will always be viewed with suspicion

Recognition of NGRA in cosmetic safety assessment...

Unilever

... Could we apply similar approaches to chemical registration?

Archives of Toxicology (2022) 96:743–766 https://doi.org/10.1007/s00204-021-03215-9

REGULATORY TOXICOLOGY

A framework for chemical safety assessment incorporating new approach methodologies within REACH

Nicholas Ball¹ · Remi Bars² · Philip A. Botham³ · Andreea Cuciureanu⁴ · Mark T. D. Cronin⁵ · John E. Doe⁵ · Tatsiana Dudzina⁶ · Timothy W. Gant⁷ · Marcel Leist⁸ · Bennard van Ravenzwaay⁹

European Commission: Scientific Committee on Consumer Safety (2021)

Acknowledgements

Maria Baltazar, Alistair Middleton, Sophie Cable, Joe Reynolds, Hequn Li , Predrag Kukic, Paul Carmichael, Beate Nicol, Sharon Scott, Sophie Malcomber, Annabel Rigarlsford, Chris Sparham, Trina Barritt, Katarzyna Przybylak, Georgia Reynolds, Andrew White, Sarah Hatherell, Richard Cubberley, Carl Westmoreland

