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Sulfanilamide tragedy
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Animal testing
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Chemical space

10* new
compounds
every year

1050 possible
compounds

1024 stars in the UNIVERSE

108 compounds
with data
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Adverse Outcome Pathway
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Structure — Activity Relationships
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Adverse Outcome Pathway
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Adverse Outcome Pathway

Adverse Outcome Pathway

Toxicant Organism Population
Responses Responses
Lethality
h . | Impaired Structure
Chemica : Development
— Erg::rlh'?:; —»  Recruitment
structure Impaired
Reproduction Extinction
Cancer
Anchor 2
(adverse outcomes at the
arganism- or population-level)
Toxicity Pathway
Anchor 1
(initiating event)

UNIVERSITY OF

" CAMBRIDGE




Adverse Outcome Pathway (idealized)
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Toxicological
profile

\ carcinogenicity,

liver toxicity,
reproductive toxicity




Model building cycle
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Model building cycle
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Motivation
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Contents

1. How we introduce uncertainty to models
2. How we know our uncertainty is correct

3. How to interpret uncertainty

B> UNIVERSITY OF

“§ CAMBRIDGE



Contents

1. How we introduce uncertainty to models

CAMBRIDGE



Bootstrapping

UNIVERSITY OF

CAMBRIDGE

Learner 1

Learner 2

Learner n

Aggregating




Conformal prediction
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|
Calibration ]—— Mon-conformity i ,@
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Bayesian neural network

NN weights are

Mean-variance | Many samples

estimation Mean, std

Deep ensemble
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Contents

2. How we know our uncertainty is correct
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Calibration

We want models to:

Return range of values Y%X, such that out of all predictions of this range
the true value lies within this rangel 95%|of the time.
[confidence interval can be changed]

A model that does this for every
choice of confidence interval is
called “well-calibrated”
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Calibration curve

X axis: confidence level S
Y axis: % of labels within given CI

Metric: calibration curve R? score

% of labels within CI

AR

Confidence
intervals too wide

I NN

Confidence level \
Well-

, Confidence intervals
calibrated

too narrow
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Efficiency

We want models to:

Return range of values Y%X, such that out of all predictions of this range
the true value lies within this range 95% of the time.
[confidence interval can be changed]

* And we also want this range to be as small as possible
Mean of the predicted standard deviations is efficiency
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Efficiency

Predicted mean More efficient:
And we also want this range _ Confident in

to be as small as possible / mean

0.5 A

Mean size of the confidence interval:"

0.3 1

is called efficiency

0.1 4

0.0 4

T T T - = -
3 2 -1 0 1 2 3

Dis’Eribu_tion for a single prediction
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Dispersion

We want models to:

Return range of values Y%X, such that out of all predictions of this range
the true value lies within this range 95% of the time.
[confidence interval can be changed]

* And we want each molecule to give a different range
Standard deviation of the ranges is called dispersion
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Dispersion

Efficiency score

And we want each molecule to Less disperse:

. . All predictions have
give a different range similar uncertainty o
Standard deviation of the ranges
is called dispersion

Distribution of predicted
standard deviations
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Geometric mean of probabilities (GMP)

Proper scoring rule analogous to NLL that
has units of probability.

Predicted mean True value
p;=0.27
When error is low, rewards confidence

\ When error is high, rewards uncertainty
0.3 1

0.2 n H

GMP = (1_[ pi) = P1D2 " D

i=1

0.0
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Contents

3. How to interpret uncertainty
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Confidence Iintervals

95% of probability mass

> 3 Given model is well-calibrated:
™% | . .
. \ Can define confidence interval, where
| \ there is X% chance that the true value lies
= /” \ within this range
01 /
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Probability of exceeding threshold

Predicted mean Critical threshold . ) ..
If interested in a critical threshold:

| P(> critical)
Can find P(> critical) which is more

meaningful than simply comparing the
mean to the critical threshold

0.3

0.2

0.1
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Uncertainty vs Mean Error
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Aleatoric vs Epistemic uncertainty

Alea: Dice (Latin)

- Aleatoric uncertainty represents
randomness inherent in the model
- Additional knowledge cannot
eliminate it
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Episteme: Knowledge (Greek)

- Epistemic uncertainty represents
lack of knowledge about the system
- Can be overcome with additional
data and learning



Applicability domain Is like epistemic uncertainty
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Epistemic uncertainty and neighbour density

0.55 -
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Case study

0
M k
0 A B '
.'\M
SMILES: Cclcc(O)c(CN2CCCC2)c2¢1C(=0)/C(=C\clcccol)02 SMILES: CN(CCCn1c(=0)oc2cc(CNC[C@H](O)c3cec(O)c(NC=0)c3)ccc21)
Predicted mean: [4.54] Predicted mean: [6.28]
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Case study

SMILES: Cclcc(0)c(CN2CCCC2)c2¢1C(=0)/C(=C\clcccol)02

Predicted mean: [4.54]

95% Cl: [3.12] — [5.96]
Epistemic uncertainty: [0.244]

P(>5): [0.255]
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SMILES: CN(CCCn1c(=0)oc2cc(CNC[C@H](0O)c3ccc(0O)c(NC=0)c3)ccc21)
Predicted mean: [6.28]
95% ClI: [4.53] — [8.04]
Epistemic uncertainty: [0.574]
P(>5): [0.929]




Conclusions

1. Uncertainty can allow us to better interpret model predictions
2. Need metrics to determine the quality of uncertainty
3. Uncertainty is weakly correlated to mean error

4. Epistemic uncertainty is a notion of applicability domain
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Questions and discussions!

(Thank you for listening to me)
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