Evaluating New Approach Methodologies for Consumer-Based Risk Assessment: Challenges and Future Perspectives

Alistair Middleton, SEAC

The objective of a consumer product risk assessment is...

Can we safely use **x**% of ingredient **y** in product **z**?

Principles of Next generation risk assessment (NGRA) for consumer safety

NGRA is defined as **an exposure-led**, **hypothesis-driven** risk assessment approach that **integrates New Approach Methodologies (NAMs)** to assure **safety without the use of animal testing**

ICCR 9 principles of NGRA

Main overriding principles:

The overall goal is a human safety risk assessment The assessment is exposure led The assessment is hypothesis driven The assessment is designed to prevent harm

Principles describe how a NGRA should be conducted:

Following an appropriate appraisal of existing information Using a tiered and iterative approach Using robust and relevant methods and strategies

Principles for documenting NGRA:

Sources of uncertainty should be characterized and documented The logic of the approach should be transparently and documented

Dent et al 2018. Computational Toxicology Volume 7, August 2018, Pages 20-26

NGRA: The assessment is designed to prevent harm

Distributions of Oral Equivalent Values and Predicted Chronic Exposures 1e+04 Estimated Exposure Range of in vitro AC50 values converted to human 1e+02 in vivo daily dose log (mg/kg/day) 1e+00 1e-02 Margin of safety 1e-04 Actual Exposure (est. max.) Slide from Dr Rusty Thomas,

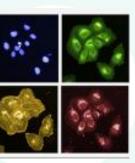
The philosophy behind this type of risk assessment aimed at preventing harm is **based on the** premise of "Protection not Prediction".

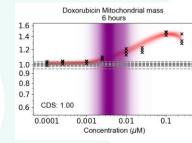
The hypothesis underpinning this type of NGRA is that if there is no bioactivity observed at consumer-relevant concentrations, there can be no adverse health effects.

EPA, with thanks

Rotroff, et al. Tox.Sci 2010

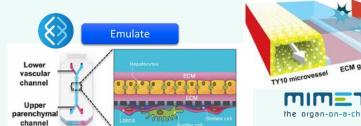
From NAMs to decision making




In-silico tools

In-vitro screening assays

Receptor-binding assays Phenotypic profiling


e.g. AR-CALUX[®] assay to measure androgen receptor activity £ 150 10-8 10-Concentration (Log M) Test Substance (DHT EC50) Flutamide (DHT EC50) • Flutamide (DHT 100xEC50) Test Substance (DHT 100xEC50) Live cell imagin 🕨



Cellular stress panel

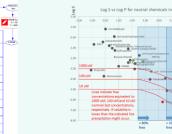
Micro-physiological systems

the organ-on-a-chip company

Exposure models

0-8.1522 V-2038 0

<u>ठ</u> ...


0-1718

0-0HX V-32.635

0+1.65M

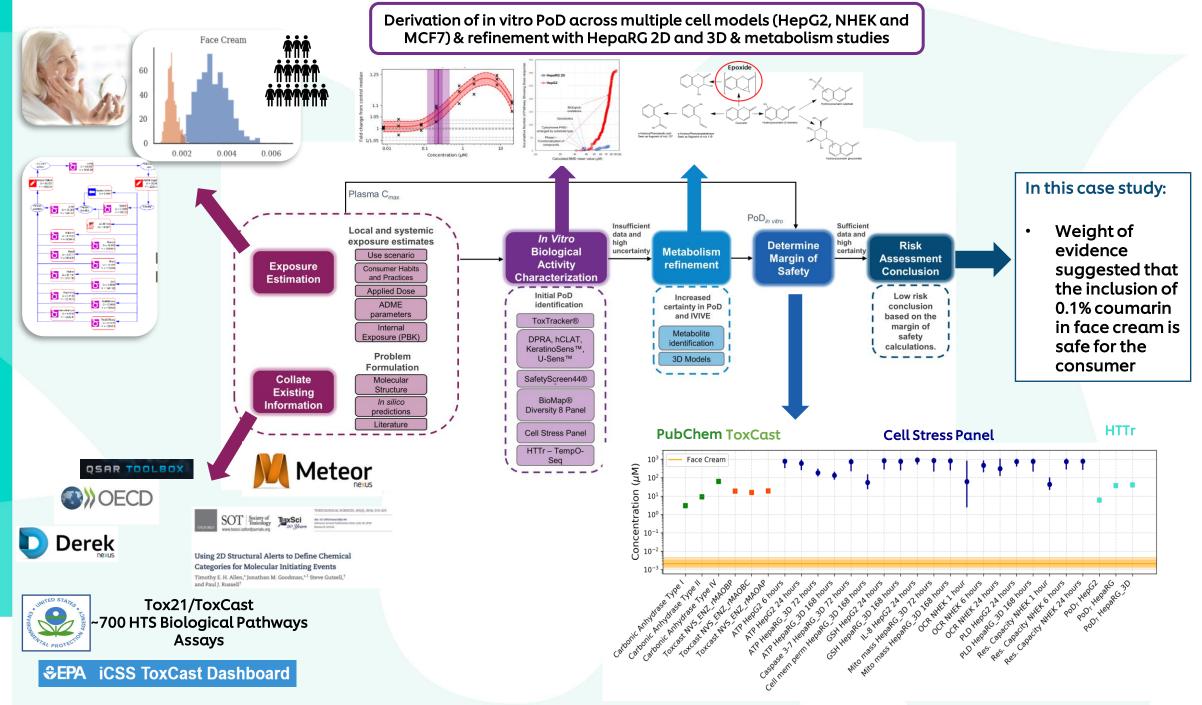
0-5340

Free concentration

Increased expression of fluorescently tagged Srxn1 (green) with increased dose of

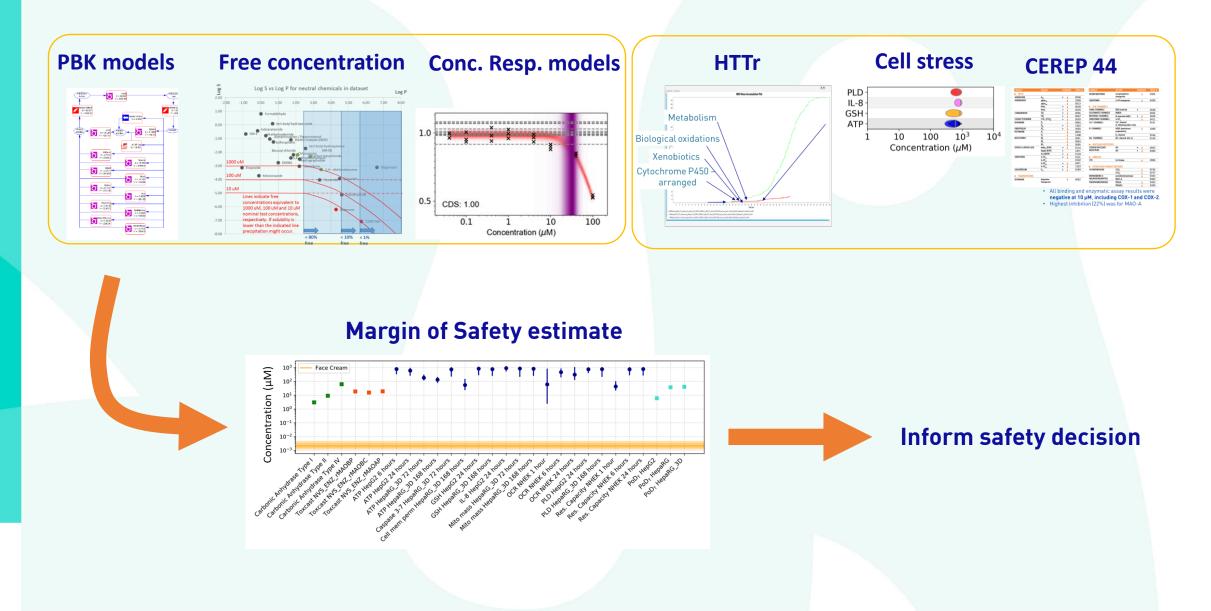
A case study approach – human health safety assessment required for...

0.1% COUMARIN IN FACE CREAM FOR EU MARKET



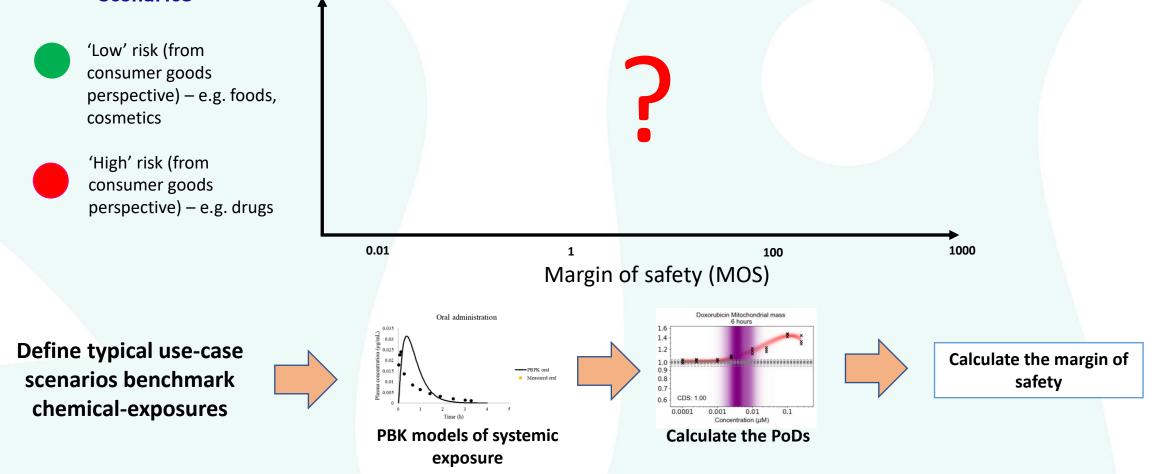
Assumed that:

- Coumarin was 100% pure
- no in vivo data was available such as animal data, History of Safe Use (HoSU) info. or Clinical data
- no use of animal data in Read Across
- *In silico* alerts known to be based on animal or *in vivo* data or on the structure of Coumarin itself were excluded



Baltazar et al., 2020, Toxicological Sciences (Volume 176, Issue 1, July 2020, Pages 236–252)

Unilever


Could these NAMs provide a low-tier toolset for systemic toxicity?

Evaluating the toolset for risk assessment: a data driven approach Chemical exposures

scenarios

Can the toolset successfully **distinguish between low and high risk** chemical exposure scenarios up to a certain MOS?

Evaluating the toolset for risk assessment: a data driven approach Chemical exposures

scenarios

'Low' risk (from consumer goods perspective) – e.g. foods, cosmetics 'High' risk (from consumer goods perspective) – e.g. drugs 0.01 1000 1 100 Margin of safety (MOS) Doxorubicin Mitochondrial mass Oral administration 6 hours 1.6 1.4 0.03 **Define typical use-case** 0.025 1.2 Calculate the margin of 0.02 1.0 scenarios benchmark 0.015 PBPK oral 0.9 0.8 safety Measured oral 0.01 0.7 0.005 CDS: 1.00 0.6 chemical-exposures 2 4 5 0.0001 0.001 0.1 0.01 Concentration (UM **PBK models of systemic Calculate the PoDs** exposure

Unilever

Can the toolset successfully **distinguish between low and high risk** chemical exposure scenarios up to a certain MOS?

Characterising potential non-specific modes of toxicity using a cellular

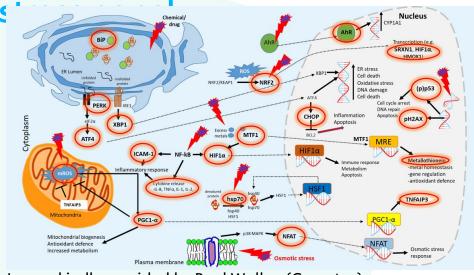
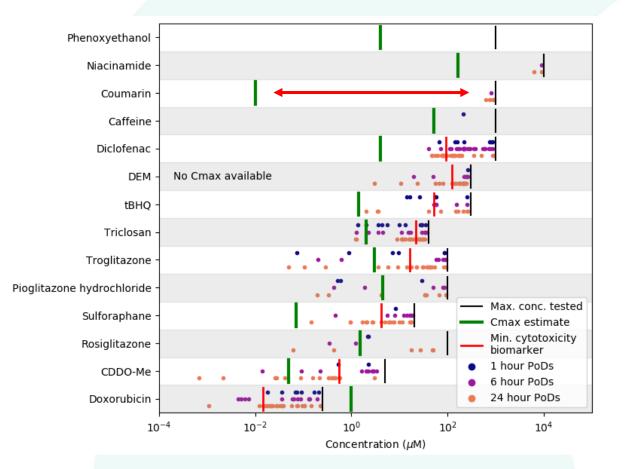
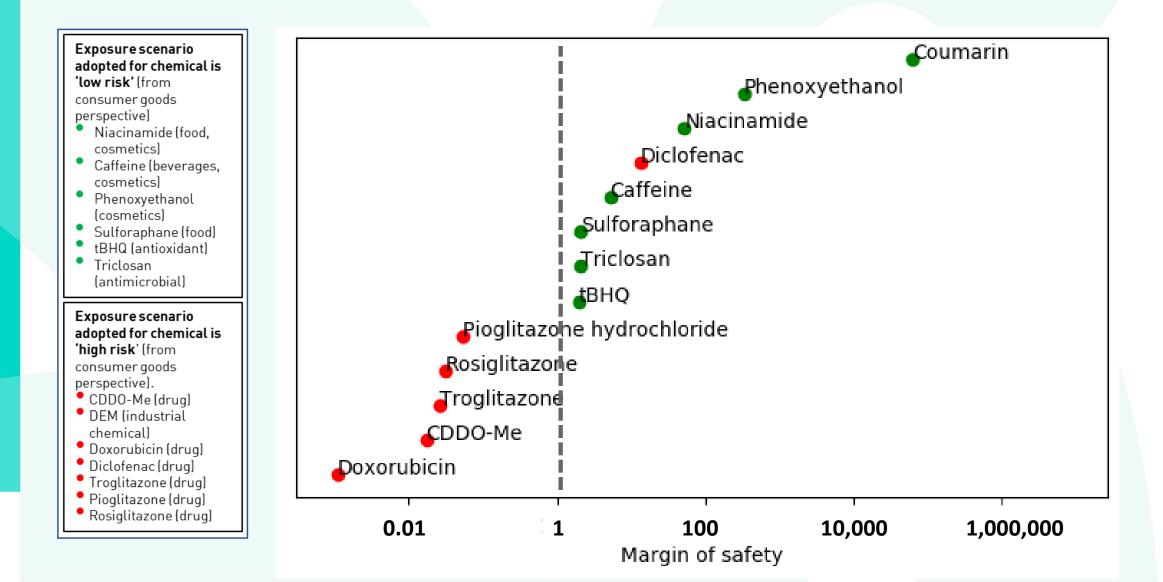
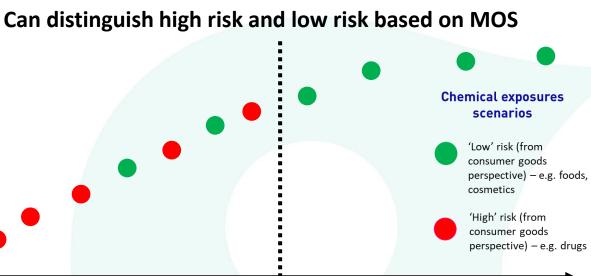
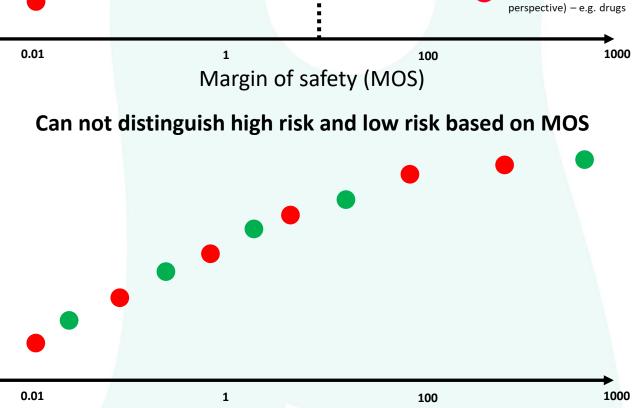



Image kindly provided by Paul Walker (Cyprotex)


- 36 biomarkers identified that were representative of key stress pathways, mitochondrial toxicity and cell health.
- 13 test substances, each with an associated exposure scenario, e.g:
 - (Low risk) Niacinamide as a cosmetic ingredient, exposure level based on tolerable daily intake.
 - (High risk) Doxorubicin as a chemotherapy drug, exposure based on therapeutic dose.

Hatherell S, Baltazar MT, Reynolds J, et al. Identifying and Characterizing Stress Pathways of Concern for Consumer Safety in Next-Generation Risk Assessment. *Toxicol Sci*. 2020;176(1):11-33. doi:10.1093/toxsci/kfaa054


Margin of safety vs chemical-exposure risk category using the cell stress panel

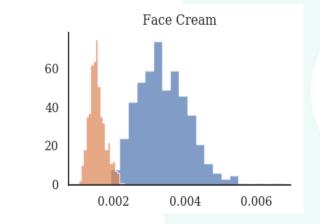


Unilever

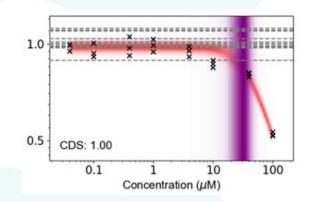
An evaluation strategy

- Identify 40+ appropriate chemical-exposure scenarios
- Run the chemicals through the tools as though de-novo compounds.
- Single timepoint (24hour)
- Single exposure
- Three cell lines for the HTTr (HepG2, HepaRG, MCF-7).

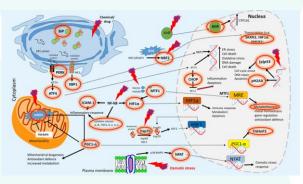
Margin of safety (MOS)

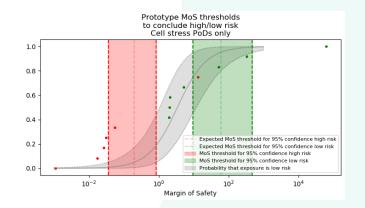


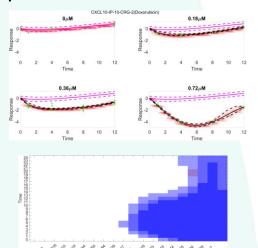
Challenges and potential solutions to implementing the strategy


Identification of appropriate chemical-exposures

A	в	U	U	E		6	н	1
Orginal_ID	List_CName	CASRN	DTXSID	List_Source	ferred_na	x_structu	ndard_In	dard_InCh
1838	R-(-)-Carvone;-;	6485-40-1	DTXSID70	HTTR chemcial master list with p	R-(-)-Carv	DTXCID50	InChI=1S	ULDHMXU
2400	3-Oxobutanamide;-;	5977-14-0	DTXSID10	ECHA EU-TOXrisk 2nd compound	3-Oxobut	DTXCID90	InChI=1S	GCPWJFK
2061	Undecane;-;	1120-21-4	DTXSID90	HTTR chemcial master list with p	Undecane	DTXCID30	InChI=1S	RSJKGSCJ
1566	N,N-Dimethyldecylamine oxide;-;	2605-79-0	DTXSID70	HTTR chemcial master list with p	N,N-Dime	DTXCID50	InChI=1S	ZRKZFNZ
905	C.I. Acid Blue 74;-;	860-22-0	DTXSID10	HTTR chemcial master list with p	C.I. Acid B	DTXCID80	InChI=1S	KHLVKKO
1583	N-Cyclohexyl-N-methylcyclohexanamin	7560-83-0	DTXSID60	HTTR chemcial master list with p	N-Cyclohe	DTXCID40	InChI=1S	GSCCALZ
703	6:2 Fluorotelomer alcohol;-;	647-42-7	DTXSID50	HTTR chemcial master list with p	6:2 Fluoro	DTXCID30	InChI=1S	GRJRKPN
388	1-Undecanol;-;	112-42-5	DTXSID00	HTTR chemcial master list with p	1-Undeca	DTXCID70	InChI=1S	KJIOQYG
2303	2,2'-Dibenzoylaminodiphenyl disulfide;-	135-57-9	DTXSID70	HTTR_2019_Screening_List_for_U	2,2'-Diber	DTXCID50	InChI=1S	ZHMIOPL
1620	Nonane;-;	111-84-2	DTXSID90	HTTR chemcial master list with p	Nonane	DTXCID00	InChI=1S	BKIMMIT
970	cis-3,7-Dimethyl-2,6-octadien-1-yl aceta	141-12-8	DTXSID204	HTTR chemcial master list with p	cis-3,7-Dir	DTXCID00	InChI=1S	HIGQPQF
1160	Diphenhydramine hydrochloride;-;	147-24-0	DTXSID40	HTTR chemcial master list with p	Diphenhy	DTXCID20	InChI=1S	PCHPOR
1123	Dihexyl phthalate;-;	84-75-3	DTXSID60	HTTR chemcial master list with p	Dihexyl pl	DTXCID50	InChI=1S	KCXZNSG
2448	4-(3-Phenylpropyl)pyridine;-;4-(3-pheny	2057-49-0	DTXSID50	EUTOXRISK Chem set 1 - pass 3 fi	4-(3-Phen	DTXCID30	InChI=1S	AQIIVEIS.
1668	Panthenol;-;	16485-10-	DTXSID30	HTTR chemcial master list with p	Pantheno	DTXCID10	InChI=1S	SNPLKNR
300	1,2-Diphenylethanone;-;	451-40-1	DTXSID60	HTTR chemcial master list with p	1,2-Diphe	DTXCID40	InChI=1S,	OTKCEEV
1958	Tetradecane;-;	629-59-4	DTXSID10	HTTR chemcial master list with p	Tetradeca	DTXCID70	InChI=1S	BGHCVCJ
821	Benzoin;-;	119-53-9	DTXSID10	HTTR chemcial master list with p	Benzoin	DTXCID10	InChI=1S	ISAOCJYI
581	3-Ethoxy-4-hydroxybenzaldehyde;-;	121-32-4	DTXSID50	HTTR chemcial master list with p	3-Ethoxy-	DTXCID90	InChI=1S,	CBOQJAN
516	2-Methoxy-4-vinylphenol;-;	7786-61-0	DTXSID70	HTTR chemcial master list with p	2-Methox	DTXCID80	InChI=15	YOMSJEA

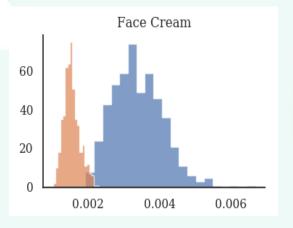

Uncertainty in exposure estimates (inc metabolism)


Uncertainty in PoD estimates and free concentration

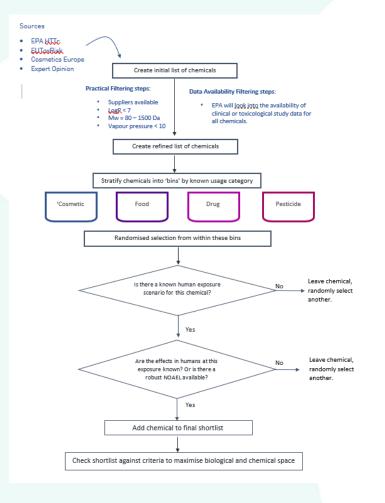

Sufficient biological coverage (assays and cell models)

Robust decision-making based on the MOS

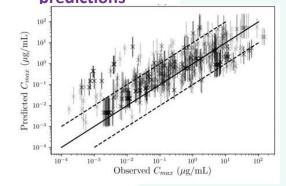
Time-dependence of cellular responses


Moxon TE, Li H, Lee MY, et al. Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. *Toxicol In Vitro*. 2020;63:104746. doi:10.1016/j.tiv.2019.104746

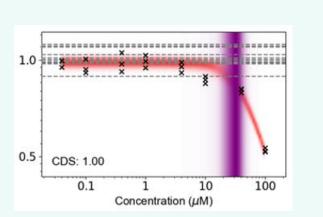
What we're doing to address these challenges (1/3)


Identification of appropriate chemical-exposures

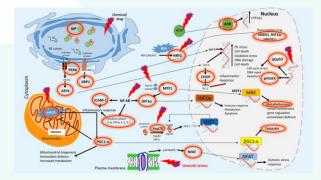
A	в	L	U	E	F	6	н	
Orginal_ID	List_CName	CASRN	DTXSID	List_Source	ferred_na	ox_structu	ndard_In	dard_InCh
1838	R-(-)-Carvone;-;	6485-40-1	DTXSID70	HTTR chemcial master list with p	R-(-)-Carv	DTXCID50	InChI=1S	ULDHMXU
2400	3-Oxobutanamide;-;	5977-14-0	DTXSID10	ECHA EU-TOXrisk 2nd compound	3-Oxobuta	DTXCID90	InChI=15	GCPWJFK
2061	Undecane;-;	1120-21-4	DTXSID90	HTTR chemcial master list with p	Undecane	DTXCID30	InChI=15	RSJKGSCJ
1566	N,N-Dimethyldecylamine oxide;-;	2605-79-0	DTXSID70	HTTR chemcial master list with p	N,N-Dime	DTXCID50	InChI=1S	ZRKZENZ
905	C.I. Acid Blue 74;-;	860-22-0	DTXSID10	HTTR chemcial master list with p	C.I. Acid B	DTXCID80	InChI=15	KHLVKKO
1583	N-Cyclohexyl-N-methylcyclohexanamin	7560-83-0	DTXSID60	HTTR chemcial master list with p	N-Cyclohe	DTXCID40	InChI=15	GSCCALZ
703	6:2 Fluorotelomer alcohol;-;	647-42-7	DTXSID504	HTTR chemcial master list with p	6:2 Fluoro	DTXCID30	InChI=15	GRJRKPM
388	1-Undecanol;-;	112-42-5	DTXSID00	HTTR chemcial master list with p	1-Undecar	DTXCID70	InChI=15	(KJIOQYG)
2303	2,2'-Dibenzoylaminodiphenyl disulfide;-	135-57-9	DTXSID70	HTTR 2019 Screening List for U	2,2'-Diben	DTXCID50	InChI=15	
1620	Nonane;-;	111-84-2	DTXSID90	HTTR chemcial master list with p	Nonane	DTXCID00	InChI=15	BRIMMIT
970	cis-3,7-Dimethyl-2,6-octadien-1-yl aceta	141-12-8	DTXSID204	HTTR chemcial master list with p	cis-3,7-Dir	DTXCID00	InChI=15	HIGOPOR
1160	Diphenhydramine hydrochloride;-;	147-24-0	DTXSID40	HTTR chemcial master list with p	Diphenhy	DTXCID20	InChI=15	PCHPORC
1123	Dihexyl phthalate;-;	84-75-3	DTXSID60	HTTR chemcial master list with p	Dihexyl pl	DTXCID50	InChI=1S	KCXZNSG
	4-(3-Phenylpropyl)pyridine;-;4-(3-pheny	2057-49-0	DTXSID50	EUTOXRISK Chem set 1 - pass 3 fi	4-(3-Phen	DTXCID30	InChI=15	AQIIVEIS
1668	Panthenol;-;	16485-10-	DTXSID30	HTTR chemcial master list with p	Pantheno	DTXCID10	InChI=15	SNPLKNR
300	1,2-Diphenylethanone;-;	451-40-1	DTXSID60	HTTR chemcial master list with p	1,2-Diphe	DTXCID40	InChI=1S	OTKCEEW
1958	Tetradecane:-:	629-59-4	DTXSID10	HTTR chemcial master list with p	Tetradeca	DTXCID70	InChI=15	вднсусл
821	Benzoin:-:	119-53-9		HTTR chemcial master list with p				
581	3-Ethoxy-4-hydroxybenzaldehyde;-;	121-32-4		HTTR chemcial master list with p				
	2-Methoxy-4-vinylphenol;-;			HTTR chemcial master list with p				

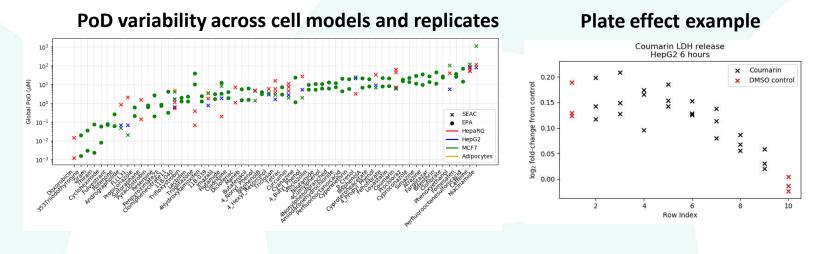

Uncertainty in exposure estimates (how 'wrong' are the PBK models?)

- Systematic selection of different chemicals with defined human-use scenarios (cosmetics, drugs, etc)
- Use of both automated and manual data extraction approaches
- Address potential statistical bias through randomised selection of chemical-exposure scenarios together with hand-selected scenarios.



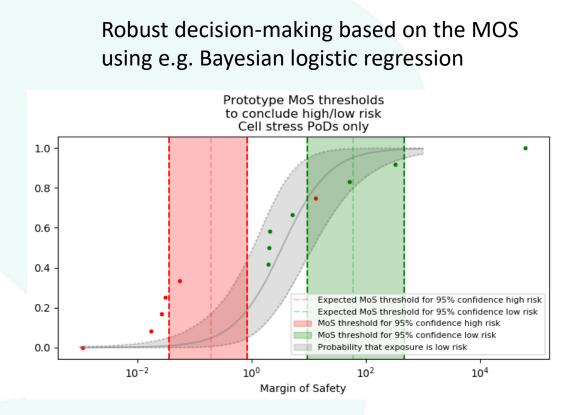
 Evaluation of 'how wrong' PBK models can be by comparing human Cmax/AUC data to model predictions

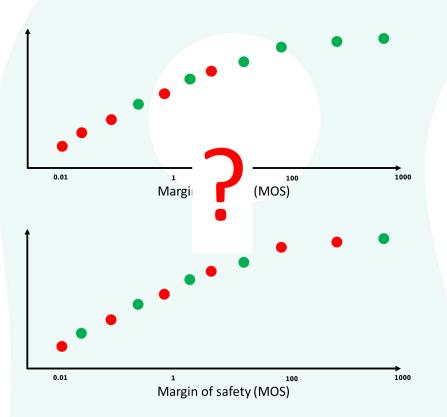



What we're doing to address these challenges (2/3)

Uncertainty in PoD estimates

Sufficient biological coverage (assays and cell models)





- Optimising experimental design of our assays (number of replicates, plate layout, appropriate controls etc)
- Compare different PoD calculation approaches (BMDexpress etc)
- Analysing biological pathway coverage across large numbers of compounds and cell types.
- Evaluating other broad-spectrum assays (e.g. phenotypic profiling).

What we're doing to address these challenges (3/3)

Using the toolbox data, deploy probabilistic models that quantify the (un)certainty that a given exposure scenario is low-risk based on the margin-of-safety.

Concluding remarks

- 1. In the context of risk assessment, NAMs must be primarily evaluated according to the decisions that will be made when using them.
- 2. Selecting and identifying appropriate chemical-exposure scenarios is perhaps one of the biggest challenges we face.
- 3. The approach described represents a low-tier toolset that could potentially cover the majority of cases. The added value of using more sophisticated tools (e.g. micro-physiological systems) is also being evaluated.

Acknowledgements

Bio Spyder & eurofins

s to

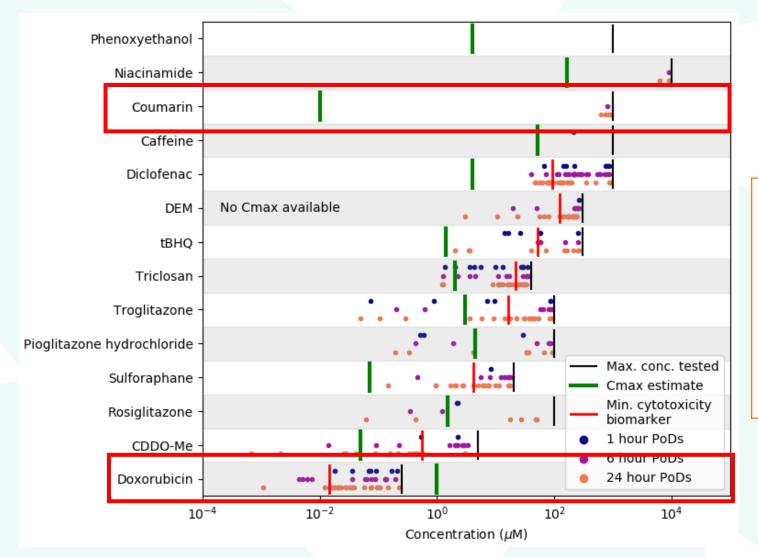
Unilever

Maria Baltazar, Tom Cull, Joe Reynolds, Beate Nicol, Mi-Young Lee, Predrag Kukic, Alexis Nathanail, Sophie Cable, Georgia Reynolds, Mona Delagrange, Tom Moxon, Hequn Li, Mabel Cotter, Jade Houghton, Andy White, Matthew Dent, Paul Carmichael, Sarah Hatherell, Sophie Malcomber, Richard Cubberley, Ruth Pendlington, Paul Russell

Cyprotex

Paul Walker, Stephanie Ryder, Caroline Bauch

Cambridge


Andreas Bender, Danilo Basili

EPA

Imran Shah, Richard Judson, Bryant Chambers, Josh Harrell, Logan Everett

NGRA for 0.1% coumarin in face cream: In vitro biological activity characterisation: In vitro cell stress panel

Results:

Coumarin not very active in comparison to known "high risk compounds" like doxorubicin

 PoDs shown for HepG2 only

Hatherell *et al.*, 2020, Identifying and characterizing stress pathways of concern for consumer safety in next generation risk assessment, Tox. Sci. in Press. <u>https://doi.org/10.1093/toxsci/kfaa054</u>