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Can we use a new ingredient safely and how do we know?

Can we safely use x% of ingredient y in product z?

ey

NGRA is defined as an exposure-led, hypothesis-driven risk assessment approach that integrates
New Approach Methodologies (NAMs) to assure safety without the use of animal testing

New Approach
Methods Work*Plan

S, Boviroomenta (Bn @elon Agcocy
Office of Rescarch il ¥l opmer
fFic 1 Suh oy

TOXICITY TESTING IN THE 21ST

CENTURY: A VISION AND STRATEGY

EFSA Strategy 2027

- efsam




log (mg/kg/day)

1e-02

NGRA: Protection not Prediction

1e+02 1e+04

1e+00

1e-04

Distributions of Oral Equivalent Values and Predicted Chronic Exposures

B Estimated Exposure

Range of in vitro AC50
values converted to
human in vivo daily dose

- J100 ®o
r-- 4 oo o°

o o«

r-- -l v ©

- - - - - OO
be-----8--{I} o

+r--{ll©® o

F-=---=-[}an o

R

|

+--- -0 o o
o
R s

Etoxazole - + -} @

Graph from Rusty Thomas EPA, with thanks. Rotroff et al (2010) Toxicological Sciences , 117, 348-358
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The hypothesis underpinning
this NGRA is that if no bioactivity
is observed at consumer-
relevant concentrations, there
can be no adverse health
effects.

At no point does NGRA attempt
to predict the results of high
dose toxicology studies in
animals

NGRA uses new exposure
science and understanding of
human biology



Computational models in NGRA - some examples
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Computational models 1- Physiologically Based Kinetic (PBK) modelling
Aim:
According to ADME properties of a certain chemical, predict its concentration in
different organs/tissues in human body after exposure to the chemical via different

exposure route, e.g., oral, skin and inhalation @
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Key challenges:

- Understanding ADME mechanism
- Parameterisation

Li et al (2022) Toxicology and Applied Pharmacology, 442, 115992



Computationalmodels 2 - Dose Response Modelling

Aim:

* Using the dose and response data from a certain in vitro assay to derive a Point of Departure
(PoD) regarding a certain biomarker after exposure to a certain chemical.

By combing PoDs from different assays regarding different biomarkers, the overall bioactivity of
the chemical can be described, which is then compared with exposure derived from PBK
modelling, so that a safety decision can be informed.
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Key challenges:

- Whether there is a response?
5 DY - At what dose there is a response?

- Uncertainty . ,
Unilover Baltazar et al., (2020) ToxicolSci176, 236-252
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- Computational models 3 - High Throughput Transcriptomics (HTTr) Dose

I‘ESEOHSG GHGIYSiS
Aim: based on the gene expression data, provide a broad biological perturbation concentration response measure

(POD) and indicate mechanistic information as a hazard characterisation. Assumption: there is no adverse effect
without gene expression changes
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Challenges: Concentration (uM)

- Multiple parameter thresholds need to be defined that impact on overall analysis and sensitivity, e.g.,
- depth of sequencing & replicates impact power of experiment
- No. of cell lines — overall biological coverage
- fold change/p-value/BMR factor filters, choice of models for dose response, genes vs pathways — a matrix of
. options with best set(s) still currently being assessed.
@é@ - Transparency in sharing complex assay with complex bioinformatic workflows to enable replication. OECD
Unilower Transcriptomic Reporting Framework (TRF)



Computational models 4 - Bayesian statistics

Aim:
e Using (newly) observed/available data to update the probability distribution of parameters in a
mathematical model based on
e 1) the prior probability distribution of the parameters before observing the data, and
« 2)alikelihood function describing how likely the data can be observed given certain values
that the parameters take.
 Can be used in many different areas, such as analysing dose response relations.

Bayesian linear regression
30-

Bayesian Statistics
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1 Key challenges:
Uf’%% - Specify prior distribution of parameters and a likelihood function



- Computational models 5 - Expert Knowledge Elicitation

Aim:
Handling the situation where there is not enough data to adequately inform the risk assessment
decision but there is some extent of data and knowledge exist which can be used to inform the

decision.
* Elicit experts’ knowledge in a way that common cognitive and psychological biases are minimised by
following a strict protocol with rational of the experts’ judgment epr|C|tIy justified and documented.
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Key challenges:
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- Example - evaluating protectiveness of safety assessment using non animal methods
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Estimating the internal exposure of a chemical based on
a given use-case scenario, using 3 different levels of
information:

- Insilico informed parameters only
-+ some in vitro informed parameters
-+ some in vivo informed parameters

Outputs from these modules are combined in the third module
to estimate the Bioactivity Exposure Ratio (BER)

Estimating the various Points of Departure (PODs) based
on in vitro bioactivity data using three of the in vitro
bioactivity platforms

- High-throughput transcriptomics

- A cell stress panel

- In vitro pharmacological profiling

Middleton et al., (2022) ToxicolSci, 189(1), 124-147



Example - evaluating protectiveness of safety assessment using non animal methods

Step 1: Define Benchmark chemical- _ - —

exposure scenarios Chem X; Scenario Y, Low/High
Chem X, Scenario Y, Low/High

Step 2: Apply NAM tools to generate
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Unilewer . .
Middleton et al., (2022) ToxicolSci, 189(1), 124-147



Example - evaluating protectiveness of safety assessment using
non animal methods
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Discussion

A number of computational methods have
been applied to NGRA

Reproducible and

transparent data
analysis, with
uncertainty

An example is briefly introduced which applies _properly

some of the methods above to demonstrate o communicated

the protectiveness of systemic safety focimEn oot cotmo-rrzmr;;j;;;iton

assessment using non animal methods oM ene audiences
Building

In general, computational models are Trust and

increasingly applied across different areas e Confidence

(bioactivity and exposure) within NGRA. evaluation of Advocating,

approaches, :
which should be e Ell

available for upskilling

We need to work hard to ensure methods are | 2 EienEs o
robust and acceptable networks of

organisations
with common

interests
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