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• SEAC’s Website for what we are discussing today:

www.TT21C.org

Web Resourse

http://www.tt21c.org/


Risk Based Approach: 
Considers both the hazard and the 
exposure to evaluate the risk 

Can we safely use % of ingredient in 
product?

For consumers; workers; 
the environment

Ensuring Safe Ingredients for Foods, Drinks, 
Homecare and Cosmetic Products



All Consumers Want Safe Products But Majority Want 
Them Not Tested On Animals + Transparency



Use of Existing OECD In Vitro Approaches

Skin and eye irritation; skin sensitization; 
phototoxicity; mutagenicity



But What About Systemic Toxicity?

NOAEL
 ÷ 10 - 1000

Targeted Testing Uncertainty Factors

?

Is it safe?

It has served us well enough

e.g. 90 Day Repeat Dose Study

PoD

NOAEL



1920 1930 1940 1950 1960 1970 1980 1990 2000 2010| | | | | | | | |

Acute toxicity 
studies (LD50) 

developed

Genotoxicity 
assays 

developed

Draize test 
introduced for 

eye irritants

Rodent 
cancer 

bioassay

Studies for 
reproductive 

toxicity

Thalidomide 
led to 

development-
al tox tests 

Repeat tox studies 
developed with 

FDA factors of 100

Mechanistic? Human-based?



2007 Toxicity Testing in the 21st Century (TT21C)

“Advances in 
toxicogenomics, 
bioinformatics, systems 
biology, and 
computational toxicology 
could transform toxicity 
testing from a system 
based on whole-animal 
testing to one founded 
primarily on in vitro 
methods that evaluate 
changes in biologic 
processes using cells, cell 
lines, or cellular 
components, preferably of 
human origin.”  

Perturbation of ‘toxicity pathways’ and stress 
responses



TT21C + NGRA



THE EPA BLUEPRINT



Main overriding principles: 
» The overall goal is a human safety risk assessment 
» The assessment is exposure led 
» The assessment is hypothesis driven
» The assessment is designed to prevent harm

    Principles describe how a NGRA should be conducted: 
» Following an appropriate appraisal of existing information
» Using a tiered and iterative approach
» Using robust and relevant methods and strategies
 

    Principles for documenting NGRA: 
» Sources of uncertainty should be characterized and documented
» The logic of the approach should be transparently and 

documented

4

3

2

Principles of NGRA from ICCR



Product types Face cream Shampoo Body Lotion

Amount of product used per day 

(g/day) using 90th percentile
1.54 10.46 7.82

Frequency of use 2 times/day 1 time/day 2 time/day 

Amount of product in contact with 

skin per occasion (mg)
770 10460 3910

Ingredient inclusion level 0.1% 0.1% 0.1%

Skin surface area (cm2) 565 1440 15670

Leave on or rinse off leave on rinse off leave on

Exposure duration per occasion 12 hours 24 hours 12 hours

For rinse off product, retention 

factor of finished product on skin b
n.a. 0.01 n.a.

Amount of ingredient in contact 

with skin per occasion (mg)
0.77 0.105 3.91

Local dermal exposure per 

occasion (µg/cm2)
1.36 0.073 0.25

Systemic exposure per day 

(mg/kg)
0.02 0.00154 0.12

• Exposures to face cream and 
body lotion above threshold of 
toxicological concern (TTC) 
depending on Cramer 
classification

• Shampoo exposure would be 
below all non genotoxic TTC

• Only face cream and body 
lotion risk assessment 
progress to NGRA

Applied dose



dA/dt = + KA * AGI 

+ QL * (CA - CV)

- Vmax * CL/ (Km + CL)

Uptake from GI tract

Transport from arterial 

to venous blood

Metabolism

substrate

cofactor

S9/Microsomes

Model Input:
Physiological parameters
Partition coefficients
Kinetic constants (in vitro)

• Predicting systemic 
exposure

• Enabling us to select and 
test relevant doses

• Increased role for clinical 
work to confirm systemic 
exposure levels

PBK (Physiologically Based Kinetic) Modelling



points of departure (PoD) 
for risk assessment

In vitro In vivo

One Interpretation of TT21C: Quantitative in vitro  to in vivo 
extrapolation  

http://www.google.nl/url?sa=i&rct=j&q=human&source=images&cd=&cad=rja&docid=DdROR6ZeUAu0xM&tbnid=7TACUe7CREFE4M:&ved=0CAUQjRw&url=http://news.appmaza.com/Tags/Human&ei=2e-sUY7CFcaY0AW28IDwDQ&bvm=bv.47244034,d.d2k&psig=AFQjCNFBIb2DPALBUeshIecZiYtqp3_T1A&ust=1370374456388065
http://www.onlineplakletters.nl/onlinedecostickers/clipart_edit.php?new_clipart_id=65


Another Interpretation: Tox21/ToxCast 
~700 HTS Biological Pathways Assays

https://www.epa.gov/chemical-
research/toxicity-forecasting

National Institute of 
Environmental Health 
Sciences (NIEHS) / 
National Toxicology 
Program (NTP)

National Center for 
Advancing 
Translational Sciences 
(NCATS)

U.S. Food and Drug 
Administration (FDA)

National Center for 
Computational 
Toxicology (EPA)
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Slide from Dr Rusty Thomas, 
EPA, with thanks

Triclosan
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Rotroff, et al. Tox.Sci 2010

Range of in vitro AC50 
values converted to human 

in vivo daily dose

Actual Exposure (est. max.)

Safety margin

Hepatic clearance 

and plasma protein 

binding 

determinations

“Protection not Prediction”

In Vitro Bioactivity vs Bioavailabilty



Katie Paul-Friedman et al. 2019 Tox Sciences, October 

Issue

EPA, NTP, HC, A*STAR, ECHA, EFSA, JRC, RIVM…



Time

Exposure models 
(PBK, free/total 
concentration)
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NAM* Point of departure 
derived from in vitro 

concentration-responseMargin of 
safety

Cmax

Point of Departure

The Margin of Safety Approach

*NAM = New Approach Methodology



A case study approach – human health safety assessment 
required for… 

Assumed that:

- Coumarin was 100% pure

- No in vivo data was available such as 
animal data, history of safe use (HoSU)  
or clinical data or use of animal data in 
read across

0.1% COUMARIN IN FACE CREAM FOR EU MARKET
(NEW FRAGRANCE)

Baltazar et al., (2020) Tox Sci  Volume 176, Issue 1, 236–252



Next-Generation Risk Assessment case study workflow 
for 0.1% coumarin in face cream

Baltazar et al., (2020) Tox Sci  Volume 176, Issue 1, 236–252



Exposure 

Estimation 

Consumer Habits 

and Practices

Applied Dose

Local and systemic 

exposure estimates

Internal 

Exposure (PBK)

Use scenario

ADME 

parameters

NAMs used to estimate internal concentration 

GastroPlus® 
(Simulations 

Plus)

Moxon et al., (2020). Application of physiologically based 
kinetic (PBK) modelling in the next generation risk 
assessment of dermally applied consumer products. 
Toxicology in Vitro Volume 63 

Simulated plasma concentration 
of coumarin after dermal 
exposure:



Collate 

Existing 

Information

Molecular 

Structure

In silico 

predictions

Literature

Problem 

Formulation

NAMs used to predict biological activity based on chemical 
structure

ToxTree

In silico models to predict 
Molecular initiating events 

(MIEs)



In Vitro 

Biological 

Activity 

Characterization

.

Initial PoD 

identification

HTTr – TempO-

Seq

SafetyScreen44®

Cell Stress Panel

BioMap® 

Diversity 8 Panel

ToxTracker®

NAMs used to characterize the biological activity of 
coumarin

To investigate possible interactions between 
coumarin and the 83 key targets involved in drug 

attrition



In Vitro 

Biological 

Activity 

Characterization

.

Initial PoD 

identification

HTTr – TempO-

Seq

SafetyScreen44®

Cell Stress Panel

BioMap® 

Diversity 8 Panel

ToxTracker®

NAMs used to characterize the biological activity of 
coumarin

36 Biomarkers; 
3 Timepoints; 

8 Concentrations; 
~10 Stress Pathways

Biomarkers
Cell 
type

Stress 
pathway

PoD

(µM)

Effec
t

Concentratio
n dependency 

score (CDS)
ATP (6h)

ATP (24h)

HepG2
cell health

794 (363-977)

617 (282-891)

down

down

0.98

1
Phospholipidosis 
(24h)

HepG2
cell health

759 (437-977) down 0.93

GSH (24h) HepG2 oxidative 
stress

851 (301-1000) up 0.92

IL-8 (24h) HepG2
inflammatio

n
912 (575-1000) down

0.61

OCR (1h)

OCR (6h)

OCR (24h)

NHEK
mitochondria

l toxicity

62 (2.6-776)

468 (214-794)

309 (138-1000)

down

0.6

1

0.52
Reserve capacity (1h)

Reserve capacity (6h)

Reserve capacity 
(24h)

NHEK
mitochondria

l toxicity

44 (23-96)

759 (302-1000)

794 (295-1000)

down

1

0.9

0.55

• Mitochondrial 
Toxicity

• Oxidative Damage
• DNA damage
• Inflammation
• ER stress
• Metal stress
• Heat Shock
• Hypoxia
• Cell Health

Dose-response analysis and in 
vitro PoD derivation





NAMs for in vitro bioactivity: HTTr (Tempo-Seq)
  

High-Throughput Transcriptomics Gene Expression Profiling (HTTr)

Cell lines (chosen to express a range of relevant receptors)

MCF-7 – human breast adenocarcinoma cell line

HepG2 – human liver carcinoma

HepaRG – terminally differentiated hepatic cells that retain many 
characteristics of primary human hepatocytes + as spheroids

N-HEK – primary normal human epidermal keratinocytes 

1. Defining a safe operating exposure for systemic toxicity using a 
NOTEL                 (No Transcriptional Effect Level)

2. Defining compound similarity grouping (Read Across)

NOTEL is the derived concentration of a compound that does 
not elicit a meaningful change in gene expression (i.e. the 
threshold of the concentration that elicits minimal mechanistic 
activity)



In Vitro 

Biological 

Activity 

Characterization

.

Initial PoD 

identification

HTTr – TempO-

Seq

SafetyScreen44®

Cell Stress Panel

BioMap® 

Diversity 8 Panel

ToxTracker®

NAMS used to characterize the biological activity of 
coumarin

Transcriptomics can be applied as a broad nontargeted biological 
screen – PoD determination using BMDexpress

Cell model HepG2 MCF7 HepaRG 2D

Pathway level tests PoDT (µM)
(308 

pathways)
(0 pathways) (17 pathways)

20 pathways with the lowest p value 

Reactome
70 NA 58*

20 pathways with the lowest BMD 

Reactome
44 NA 58*

BMD of Reactome pathway with lowest 

BMD that meets significance threshold 

criteria

31 NA 38

Gene level tests PoDT (µM)
(1570 

genes)
(47 genes) (87 genes)

Mean BMD of 20 genes with largest fold 

change
6 3 54

Mean BMD of genes between 25th and 75th 

percentile
17 1 59

Farmahin, R., Williams, A., Kuo, B. et 
al. Recommended approaches in the 
application of toxicogenomics to 
derive points of departure for 
chemical risk assessment. Arch 
Toxicol 91, 2045–2065 (2017). 
https://doi.org/10.1007/s00204-016-
1886-5



Next-Generation Risk Assessment case study workflow 
for 0.1% coumarin in face cream

Baltazar et al., (2020) Tox Sci  Volume 176, Issue 1, 236–252



Time

Exposure models 
(PBK, free/total 
concentration)
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NAM* Point of departure 
derived from in vitro 

concentration-response

Bioactivity 
exposure 
ratio

Cmax

Point of Departure

The Margin of Safety Approach

*NAM = New Approach Methodology



Determination of MoS using NAMs and risk assessment conclusion

Determine 

Margin of 

Safety

PubChe
m

ToxCast Cell Stress Panel HTTr

The 5th percentile of the MoS 
distribution ranged between 

706  and 96738

Margin of safety

In this case study:

• Weight of evidence suggested that the 
inclusion of 0.1% coumarin in face cream is 
safe for the consumer



The Key Elements in our NGRA Approach 



NGRA is hypothesis-driven – examples of bespoke assays 
used in the coumarin case study 

Genotoxicity assessment: ToxTracker®

• Coumarin and its metabolites triggered genotoxicity 
alerts 

Muta
genic 
DNA 

lesion
s

DNA 
double 
strand 
breaks

General 
cell 

stress

Oxidative 
stress, ROS 
production

Protein 
damage

6 GFP reporter mouse embryonic stem (mES) cells

Immunomodulatory screening assay: BioMap® Diversity 8 
Panel

• Coumarin predicted to have anti-inflammatory 
properties

Metabolite identification & PoD refinement

Coumarin is preferentially detoxified to 
hydroxycoumarin

Cell stress & HTTr 

in 3D HepaRG 

models

▪ Low bioactivity also found in a 
metabolic competent cell 
model (HepaRG 3D)

▪ PoDs range: 41-871 µM – similar 
range as in from 2D cells



Risk 

Assessment 

Conclusion Exposure

Estimation Consumer Habits and 

Practices

Applied Dose

Use Scenario

Molecular Structure

In silico 

Predictions

Collation of 

Existing 

Information

Literature

ADME Parameters

Internal Exposure 

(PBK)

Systemic

Exposure Estimates

Problem

Formulation

In Vitro

Biological 

Activity 

Characterization

In vitro pharmacological profiling 

(IPP)

Cell Stress Panel (CSP)

High-Throughput transcriptomics 

(HTTr)

Initial PoD

Identification

Determination 

of Bioactivity-

exposure ratio

Integration of maternal 

and foetal ADME 

parameters in a  

“pregnant” PBK model

Expanded pharmacological safety 

screening, including MIE defined 

from existing DART AOPs or other 

known receptors affecting 

development and reproduction

Including NAMs covering 

developmental toxicity screening 

(ReproTracker®, devTOX

quickPredict )

Sufficient 

Data & 

High 

Certainty?

Refinement 

(Hazard & 

Exposure)

Increased 

Certainty in PoD

and IVIVE

3D Models/ MPS

Exposure refinement

Low risk 

conclusion 

based on 

bioactivity-

exposure ratio 

calculations

Plasma Cmax PoDin vitro

YES

NO

Mechanistic Testing

An NGRA framework with additional NAMs relevant for DART endpoints

Integrating DART Safety Assessment into Existing NGRA Framework



The EPA Blueprint
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Dent et al., (2018) Toxicological Sciences



Microphysiological Systems (MPS)

TissUse

Emulate

Mimetas

IonTox

CNBio



Conclusions

Changing global environment for toxicology

• Consumers are demanding change; calls for non-animal, next generation risk 
assessments

• NGRA is a framework of non-standard, bespoke data-generation, driven by the risk 
assessment questions

• Enabling a transition from using data from tests in live animals to one founded on 
understanding the effects of chemicals in humans using computational approaches 
and in vitro methods that evaluate changes in biologic processes using human cells

• Constructed from in silico modelling approaches and in vitro solutions

• Need to ensure quality/robustness of the non-standard (non-TG) work and to 
characterise uncertainty to allow informed decision-making (BENCHMARKING)

• Shortcomings will be addressed by current and future research

• More research, creativity and examples needed to land this successfully with 
regulators



The NEW Gold Standard

Was:
• Rodents
• Pathology
• High-dose apical endpoints
• No adverse effect level
• Uncertainty factors

Is Now:
• Broad-based NAMs
• Implementing new NAMs
• Exposure led (PBK)
• Bioactivity not pathology
• Protection not prediction
• Underpinned by 

Computational modelling



Press 
Release 
19 August 
2021
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Thank 
you!

Supporting papers:
Toxicological Sciences ‘Highly Cited Collection’ 
Click:
Highly Cited Articles | Toxicological Sciences | Oxford Academic (oup.com)

https://youtu.be/5Z2S8MnKp7g

https://academic.oup.com/toxsci/pages/highly-cited-articles
https://youtu.be/5Z2S8MnKp7g


Decision making in Next Generation 
Risk Assessment (NGRA)

Using Computational Models to Make Sense of 
Complex Data

08/05/2024



Learning objectives

• Understanding of how models are used to make predictions or 
analyse data in toxicology, and how they can be useful. 

• Awareness of different modelling approaches currently used in risk 
assessment (e.g., Bayesian inference, physiologically based kinetic 
models etc), illustrated with examples taken from case studies.

• Understand how to get started using computational approaches to 
analyse data (including open access tools and other resources). 



About me

• Degree in Mathematics from the University of 
Edinburgh

• PhD in Applied Mathematics from the University of 
Nottingham

• Postdocs in Germany at the University of Freiburg 
and the University of Heidelberg

• Joined Unilever in 2014, hired as a mathematical 
modeller

• Science leader in Computational Toxicology



Next Generation Risk Assessment is highly interdisciplinary

Risk assessment

ex vivo human 
skin

Biology

Chemistry

Bioinformatics

Mathematical and 
statistical modelling



Back to the toolbox

CSPHTTrPBK models

Bioactivity exposure ratio

IPPFree concentration Conc. Resp. models

Inform safety decision

CSP: Cell Stress PanelHTTr: High-throughput transcriptomics IPP: In vitro pharmacological profiling



Computational models and their impact  on everyday life

dlr.de

Air transport Weather forecast Satnav

Self driving cars

digitalgyan.org

Stock market



A simple example: my journey from the UK to the US

• How long will the journey take?
• How early should I leave?
• How much fuel will I need?



Imagine a time before Google Maps…

This Photo by Unknown Author is licensed under CC BY-SA

Cambridge

London

What you want to know:
• Time it takes to get from home to the airport
• How early do you have to leave

What information you have:
• Distance from Cambridge to London
• Travel by car

Construct a (very) simple model:
• Model:
 Time   = Distance/Speed
• ‘Data’:
 Distance = 55 miles
• Assume:

 Speed = 60 miles per hour 

http://commons.wikimedia.org/wiki/File:Uk_outline_map2.PNG
https://creativecommons.org/licenses/by-sa/3.0/


Using the model make a decision

• You need to arrive to the airport by 12noon to catch your flight
• Based on your assumptions, your model prediction it will take 55 

minutes
• Should you ‘trust’ the model and leave at 11.05? 
 



Using models to make decisions

• Sitting behind Google maps is a far more complex 
and sophisticated set of models

• Informed by huge, complex datasets
• Provides estimation of journey time(s) based on 

route and time of day
• Even though it is more accurate, Google Maps can 

still go wrong!
• As a decision maker, both our model and Google 

Maps are potentially useful, but require 
judgement in terms of how you interpret their 
predictions.



Using these approaches together to make safety decisions

Consumer 
Exposure 

characterisation 

Risk Assessment

Hazard 
identification and 
characterisation 

of ingredients

Skin pen

Calculation of Bioactivity 
Exposure Ratio (BER)

The BER/MoE is defined as 
the ratio of the PoD and the 
relevant exposure estimate 



Different types of computational approaches used in NGRA

Physiologically-based 
kinetic (PBK) modelling

Dose response modelling

ToxTree

In silico tools

Statistical 
models of 

uncertainty 
and 

variability

Bioinformatics 
tools for 

analysing 
omics data

ASK CLAIRE



Principles of model development and the wet-dry cycle

• What question do you want to answer?
• What information do you have available?

Problem
formulation

Assumptions

Data Develop

Evaluate

Define model assumptions

Develop and implement the model
Generate/curate relevant 
data

How does the model 
perform?
Does it describe the data 
well?



Two examples of computational models used NGRA

Physiologically-based 
kinetic (PBK) modelling

Dose response modelling

Example of bottom-up 
modelling approach

Example of top-down 
modelling approach



Physiologically based 
(Pharmaco*)kinetic models



Physiologically-based (pharmaco) kinetic models

Problem: Quantify amount (e.g., concentration) of substance across different 
organs/regions of the body over time and for different exposure routes
Assumptions: 
• Different regions of the body (e.g. organs) are divided into separate 

compartments
• Connection between compartments reflects physiology
• Movement of substances between compartments are governed by 

biophysical processes such as diffusion, perfusion, active transport etc



Physiologically-based (pharmaco)kinetic models

Develop
• Example equations:

Liverm

Liver

Liver

Liver
VLiver

Liver
Liver

CK

CV

P

C
CQ

dt

dC
V

+
−








−= max

Rate of change of 
the amount (e.g. 

nanograms) of 
chemical  in liver

Total blood 
flow rate 
into liver 
(mL/h)

Concentration in 
blood (ng/mL)

Liver:blood partition 
coefficient

Concentration 
in liver (ng/mL)

Metabolism



Case study: Physiologically-based (pharmaco)kinetic models

Data: 
• Information sources on model parameters:

• In silico predictions
• In vitro data (e.g. clearance rate)
• Historical data (e.g. on physiological parameters such as weight/height 

distributions). 
• Human PK data on measured concentration over time in plasma, urine etc



Case study: Physiologically-based (pharmaco)kinetic models

Evaluate
• Compare model predictions against measured PK data
• Example: 

• Niacinamide used as face cream
• Model parameters informed using in silico or in vitro data

Parameter Value Reference

LogP -0.37 (Martin 1996)

pKa 13.39 (strongest acidic); 3.63 

(strongest basic)

ChemAxon 

Solubility 500000 mg/L (at 25 °C) MERCK INDEX (1996)

Fraction unbound in plasma 0.82 Predicted (ADMET predictor)

human blood-to-plasma 

partition ratio

1.7 Predicted (ADMET predictor)

Vmax (CYP2E1) 60.14 pmol/mg min (In vitro 

human liver microsomes)

(Real, Hong, and Pissios 2013)

Km 2.98 mM (Real, Hong, and Pissios 2013)

CLrenal 6.098 L/h Predicted (GastroPlus) as 

glomerular filtration rate (GFR) x 

fraction unbound in protein 

(Fup)

Intestinal absorption: 

effective permeability (Peff 

cm/s)

5×10^4 cm/s Fitted from oral human 

pharmacokinetic study (Bussink 

et al. 2002)
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Case study: Physiologically-based (pharmaco)kinetic models
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• Can use the model to then make predictions for other dosing regimes



Different parameterisation levels on model accurary

• Models will almost always be informed using imperfect data. 
• Given the models are used for decision making, it is important to quantify  

uncertainty in how wrong the models can be
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Li et al, (2022) PBK modelling of topical application and characterisation of the uncertainty of 
Cmax estimate: A case study approach, Toxicology and Applied Pharmacology, Volume 442



Challenges in the acceptance of using computational 
approaches in NGRA

Transparent 
documentation 

& open data

Understanding 
model 

limitations

Defined 
applicability 

domain

Valid scientific 
assumptions

Appropriate 
model 

evaluation

Mutual 
understanding 

across disciplines

What do you think?



OECD guidance on best practice for PBK model development

• https://www.who.int/publications/i/item/9789241500906
• https://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-

on-the-characterisation-validation-and-reporting-of-physiologically-based-
kinetic-models-for-regulatory-purposes.pdf



Going beyond PB(P)K models

• The basic principles to bottom up modelling can be used in lots of other 
areas relevant to toxicology and risk assessment

• For example, for developing models of gene expression network or 
signalling pathways.

• The key challenge with these is there is limited data to decide on 
parameter or even equations. 

Bas ter Braak et al, Mapping the dynamics of Nrf2 antioxidant and NFκB inflammatory responses by soft electrophilic 

chemicals in human liver cells defines the transition from adaptive to adverse responses (submitted)



Top down vs bottom modelling

Observed 
phenomena vs 

model

Model behaviour 
is an emergent 
property of the 

‘rules’ chosen for 
the model

Define ‘rules’ of 
how different 

variables interact

E.g., change in 
concentration 

between liver and 
plasma dictated by 

perfusion

Define individual 
model variables

Bottom up

Evaluate the model
Does the model 
provide a good 

description of the 
data?

Develop model 
based on 

observations

Observed 
phenomena

Define key variables 
and (statistical) 

relationships

Top down

Visualise the data, 
what are the key 

variables? How are do 
they appear to be 

related?

E.g., concentration 
of X in the plasma, 

liver etc



Dose response models



The cell stress panel

36 biomarkers identified that were representative 
of key stress pathways, mitochondrial toxicity and 

cell health.

Image kindly provided by Paul Walker (Cyprotex)

Cell stress biomarkers predominantly measured 
using high content imaging. Includes Extracellular 

Flux assay to measure mitochondrial function.

Intended to cover off  non-specific modes of action that lead to cell stress or mitochondrial toxicity



Dose response analysis and estimating PODs

Hatherell et al., 2020, Identifying and characterizing stress pathways of concern for consumer safety in next generation risk assessment, Tox. Sci. 
https://doi.org/10.1093/toxsci/kfaa054 

https://doi.org/10.1093/toxsci/kfaa054


Dose response analysis and estimating PODs

Clear effect No effectIs there an effect here?

• Broadly, there are two approaches to doing this – parametric and non-
parametric

• We will focus on the parametric approach

Hatherell et al., 2020, Identifying and characterizing stress pathways of concern for consumer safety in next generation risk assessment, Tox. Sci. 
https://doi.org/10.1093/toxsci/kfaa054 

https://doi.org/10.1093/toxsci/kfaa054


Principles of model development and the wet-dry cycle

• What question do you want to answer?
• What information do you have available?

Problem
formulation

Assumptions

Data Develop

Evaluate

Define model assumptions

Develop and implement the model
Generate/curate relevant 
data

How does the model 
perform?
Does it describe the data 
well?



Developing a dose response model

• Problem: We want to know:
o Does the chemical have an effect on our biomarker
o At what concentration does this occur?
o We want to quantify the uncertainty in these. 

• Assumption: There is an increase in our biomarker, which can be captured 
using a Hill function. 

Example dose response data Hill function

Concentration (𝜇M)
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Bayesian statistics – what and why

• We want to quantify uncertainty in whether a certain event occurs, e.g. 
• Whether there is a concentration-dependent effect.
• Whether you will reach the airport in 2 hours.

• One way to do this is through Bayesian statistics – our current approach to 
NGRA uses it a lot!

• Here, ‘the probability’ is a number that reflects the plausibility of some 
event occurring based on some data.



Bayesian statistics – what and why

Thomas Bayes, 1701-1761

Bayesian probability:
• Probability reflects the plausibility or belief in some event being true.
• Provides framework for updating plausibility based on available data.
• For example, can talk about the probability of a hypothesis being true, 

or a parameter taking on a certain value.
• Key terms: credible interval, priors, posterior

Frequentist probability
• What people are normally taught in school
• Basis for p-values and hypothesis testing
• Probability reflects the relative frequency at which an event occurs in 

many over many repeated trials. 
• Only really relevant when dealing with well-defined random 

experiments
• Can’t use it to talk about the probability of a ‘parameter taking a certain 

value’ or a ‘hypothesis being true’.



Bayesian statistics – what and why

Bayesian interpretation of probability
• Probability quantifies the plausibility of some event.
• Bayes’ theorem:

𝑃 𝑋 𝐷 =
𝑃 𝐷 𝑋 𝑃(𝑋)

𝑃(𝐷)
Posterior

Prior

Likelihood

• Here, D is the data and X is random variable
• E.g., X – Vmax parameter, D – experimental observations
• The key things are the likelihood, the prior and the posterior:

o Posterior: probability that Vmax takes a certain value
o Likelihood: probability of the data, given Vmax

o Prior: probability reflecting initial assumptions Vmax



Example dose response data Hill function

Back to the dose response example

Develop
• Main building blocks of the model:

o Measured data = Mean Response + Observational Noise
o               𝑦 =  𝑓 𝑥 𝐶, 𝜃, 𝑉𝑚𝑎𝑥)  +  𝜂 

• 𝑦 and 𝑥 are the observations and concentrations respectively. 
• Assume 𝜂 is normally distributed with standard deviation 𝜎

R
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Concentration (𝜇M)
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Using Bayesian models to quantify uncertainty

Example dose response data Hill function

Develop
• Hill equation:

𝑓 𝑥 𝐶, 𝜃, 𝑉𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥

𝑥

𝑥 + 𝜃
+ 𝐶

• (full Hill equation has exponent on 𝑥 and 𝜃 to obtain sharper curves)
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Concentration (𝜇M)
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Example of a prior

Prior for 𝜃 (threshold value)

𝜃 value

P
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Develop
• Have parameters 𝜃, 𝐶, 𝑉𝑚𝑎𝑥 and 𝜎 – need to be learned from the data 

Data
• Typically you only have the measured values that you are fitting to, but you 

could incorporate prior knowledge (e.g. biologically plausible values) into the 
prior.  



Learning parameters from the data

• One things that’s important to know about Bayesian statistics is that 
for most problems, it is impossible to get an exact solution to the 
posterior.

• Resort to using methods like Markov Chain Monte Carlo (MCMC) to 
take random samples from the distribution. 

Random samples of 𝜃 (from posterior) Histogram of 𝜃

Sample number

𝜃



Learning parameters from the data
Vmax C C

CORRECT LATER ON



Evaluating the dose response model

Median value

95% credibility 
range of response

• Bayesian models can be evaluated by comparing the predictive distributions to the training 
data

• When using parametric models is to fit data to multiple models and decide which one is 
best

• Sometimes you can miss effects, not because there is no effect, but because the model 
does a poor job of describing the data



Back to the cell stress panel

A B C

D E F

Hatherell et al., 2020, Identifying and characterizing stress pathways of concern for consumer safety in next generation risk assessment, Tox. Sci. 
https://doi.org/10.1093/toxsci/kfaa054 

https://doi.org/10.1093/toxsci/kfaa054


Challenges in the acceptance of using computational 
approaches in NGRA

Transparent 
documentation 

& open data

Understanding 
model 

limitations

Defined 
applicability 

domain

Valid scientific 
assumptions

Appropriate 
model 

evaluation

Mutual 
understanding 

across disciplines

What do you think?



Top down vs bottom modelling
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Evaluating a toolbox of NAMs



Back to the toolbox

CSPHTTrPBK models

Bioactivity exposure ratio

IPPFree concentration Conc. Resp. models

Inform safety decision

CSP: Cell Stress PanelHTTr: High-throughput transcriptomics IPP: In vitro pharmacological profiling



An evaluation strategy for the toolbox

Define typical use-case 
scenarios benchmark 
chemical-exposures;

Mixture of High and low 
risk

PBK models of systemic 
exposure

In-vitro cell assays, 
estimate PoDs

Calculate the bioactivity 
exposure ratio

‘High’ risk (from 
consumer goods 
perspective) – e.g. drugs

‘Low’ risk (from 
consumer goods 
perspective) – e.g. foods, 
cosmetics

Chemical exposures 
scenarios

Bioactivity exposure ratio
0.01 1     100 1000

R
an

k 
o
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Thinking about it in terms of model development

• What question do you want to answer?
• What information do you have available?Problem

formulation

Assumptions

Data Develop

Evaluate

Define model assumptions

Develop and implement the model
Generate/curate relevant 
data

How does the model 
perform?
Does it describe the data 
well?

Can we use the BERs so that 
we are protective of human 
health?

The BER can be estimated in 
terms of the PODs and Cmax 
from the PBK models

Curate relevant benchmark 
exposures and generate data

Decide on a way to 
assess how well the 
toolbox performs



Identifying suitable benchmarks for the evaluation

Chemical Exposure scenario
Risk 

classification

Oxybenzone
2 scenarios: 0.5%; 2% sunscreen

Low risk

Caffeine 2 scenarios: 0.2% shampoo & coffee oral consumption 50 mg Low risk

Caffeine 10g – fatal case reports High risk

Coumarin
3 scenarios:  4 mg/d oral consumption; 1.6% body lotion (dermal); TDI 0.1 mg/kg 
oral

Low risk

Coumarin 400 mg/kg clinical trial ~ 14 months High risk

Hexylresorcinol 3 scenarios: Food residues (3.3 ug/kg); 0.4% face cream; throat lozenge 2.4 mg Low risk

BHT Body lotion 0.5% Low risk

Sulforaphane 2 scenarios: Tablet 60 mg/day; food 4.1-9.2 mg/day Low risk

Niacinamide 4 scenarios: oral 12.5-22 mg/kg; dermal 3% body lotion and 0.1 % hair condition
Low risk

Thalidomide 3 scenarios: oral tablet 50 mg, 100 mg, 400 mg High risk

Doxorubicin 75 mg/m2 IV bolus 10 min; 21 days cycles; 8 cycles High risk

Rosiglitazone 8 mg oral tablet High risk

Valproic Acid 
(VPA)

2 scenarios: oral tablet 1000 mg & > 60 mg/kg High risk

Paraquat Accidental ingestion 35 mg/kg
High risk



Using PBK models to predict Cmax

Exposure estimation

PBK model

Use-scenario

Cmax Error 

Distribution 

model (CMED)

In silico 

parameter 

estimates

In vitro

parameter 

estimates

Human 

in vivo 

PK data

Plasma

Cmax 

estimate

(L1) (L2) (L3)

(Bayesian model)

(Gastroplus)

Estimate Bioactivity Exposure Ratio and 

Decision model

• Used a (bottom-up) PBK model to predict Cmax under different parameterisations
• Used a (top down) Bayesian statistical model to quantify the potential error in the estimate



Quantifying the error in the Cmax estimates

In silico only 
parameters

+ In vitro 
parameters

+ clinical data

• The PBK prediction error decreases as we go through the different parameterisation 
levels

• This is an empirical observation



Using a Bayesian model to learn the prediction error



Using PBK models to predict Cmax



PODS from the bioactivity platforms

Dose response plots



Initial results indicate the toolbox is protective

• Blue: low risk 
chemical-exposure 
scenario

• Yellow: high risk 
chemical-exposure 
scenario 

• Protectiveness: 100%
• Utility: 62%



Next step for the toolbox – the full evaluation

Systemic safety 
toolbox v.1

Planned full 
evaluation

(this work)

Improved 
decision model

Improved NAMs

Use learnings from evaluation 
studies to improve toolbox

• Planning to extend evaluation to ~40 chemicals with ~60 associated high risk and 
low risk exposure scenarios.

• Also in collaboration with US-EPA, expanding range of NAMs 
• Adopt iterative approach to evaluating and then identifying potential 

improvements to the toolbox.
• Use of concepts from used model evaluation and development should help build 

confidence in the approach.



Thinking about the future…

ToxTree

Gastroplus



Getting started with 
computational approaches…



Learning to code vs using existing tools
Programming Graphical user interfaces

PBK software

Dose response software

https://cran.r-
project.org/web/packages/tcpl/vignet
tes/Data_processing.html

https://benchmarkdose.com/
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