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Background

• In 2019, the European Commission established a list of chemicals that were thought to have 
endocrine activity and therefore required further safety assessment by the Scientific Committee on 
Consumer Safety (SCCS). A priority list A and list B were compiled consisting of 28 materials in total, 
including UV filters and preservatives used in cosmeticsa. 

• Cosmetics Europe’s Long Range Science Strategy (LRSS) initiated a series of systemic toxicity case 
studies to practically implement, test and refine non-animal-based workflows in applied safety 
assessments using these priority list chemicals as examples of the application of Next-Generation Risk 
Assessment. 

• Next Generation Risk Assessments (NGRA) should be exposure-led, hypothesis driven and designed to 
prevent harm.  Published ab initio systemic toxicity case studies such as phenoxyethanol 
(ENV/CBC/MONO(2021)35) and coumarin (Baltazar et al, 2020) followed these principles in comparing 
estimates of internal exposure to in vitro measures of bioactivity to determine bioactivity:exposure 
ratios (BERs) to understand the likelihood of systemic bioactivity occurring at consumer relevant 
concentrations. 

• Here we have performed ab initio style assessments for chemicals from these priority lists and 
comparators to benchmark the outputs in a Tier 1 assessment. 

Fig. 1:  Risk assessment framework demonstrating where a Tier 1 assessment would be performed after an initial problem formulation tier 
that could not reach a safety decision with the available information. It also shows where higher tier testing might be implemented to 
increase confidence in a decision or if a safety decision can’t be reached after Tier 1 data generation. 

Chemical Use Scenario Risk Classification

Octocrylene 10% in sunscreen body lotion as a UV 
filter

Low risk under the use conditions as concluded in SCCS/1627/21

Octylmethoxycinnam
ate

10% in sunscreen body lotion as a UV 
filter

Low risk under the use conditions as listed on Annex VI of the EU 
Cosmetics regulation.

Butylated 
Hydroxytoluene

0.8% in body lotion as an anti-oxidant Low risk under the use conditions as concluded in SCCS/1636/21 

Climbazole 0.2% face cream as a preservative Low risk under the use conditions as listed on Annex V of the EU 
Cosmetics Regulation. SCCS/1506/13

4-Methylbenzylidene 
camphor

4% in sunscreen body lotion as a UV 
filter

Comparator. High Risk from a systemic perspective and also with 
sufficient evidence for estrogen and thyroid system effects. 
SCCS/1640/21

Diethylstilbestrol 0.1 g/day oral medicinal use as a 
synthetic estrogen

Comparator. High risk from a systemic perspective and known 
endocrine disrupting chemical

Prochloraz 0.01 mg/kg bw/day oral residue 
consumption following use as a fungicide

Comparator. Low risk from systemic perspective as concluded by EFSA 
(2011); known to affect the estrogen and androgen systems.e

Prochloraz 10 ml oral ingestion in poisoning 
overdose

Comparator. High risk from systemic perspective, known to affect the 
estrogen and androgen systems.e

Aminoglutethimide 1000 mg/day oral medicinal use for 
endocrine disorders (including cancers)

Comparator. High risk from systemic perspective, known to affect the 
estrogen and androgen systemsf

Methods

• In order to evaluate the decision-making performance of a non-animal method (NAM)-
based workflow, use scenarios and corresponding risk classifications were identified for test 
chemicals and comparators based on traditional toxicological studies or authoritative 
scientific or regulatory opinions. 

• Internal exposure estimates were generated for all use scenarios by building physiologically 
based kinetic (PBK) models parameterised with in silico only (L1), in vitro data (L2) or 
calibrated against human clinical data (L3). Data were generated for all test chemicals to 
include a minimum set of in vitro parameters for fraction unbound, hepatic intrinsic 
clearance and blood:plasma ratio. 

• NAM bioactivity data were generated in 3 different platforms: a high-content imaging 
cellular stress assay in HepG2 cells; whole genome high-throughput transcriptomics in 
HepG2, HepaRG and MCF7 cells; in vitro pharmacological profiling of clinically significant 
protein interactions (83 targets in total, e.g. enzyme inhibition, receptor binding).

• Points of departure (PoDs) were calculated from bioactivity dose-response data (IC50 for 
pharmacological profiling, Bayesian approach for cell stress (BIFROST method) and BIFROST 
and pathway-based benchmark dose modelling for transcriptomicsb,c.

• PoDs were compared to the plasma Cmax estimates to give a BER for each chemical-use 
scenario.

Table 1. Use scenarios for test chemicals and comparators that were identified from literature or from regulatory opinions, 
along with the corresponding risk classification from a systemic toxicity  perspective. 

Conclusions

Using NAM-based bioactivity data in a risk assessment workflow results in full separation of low and high-risk benchmark chemical 

use scenarios in accordance with safety opinions published by authorities. The UV filter and preservative test chemicals are all active in 

vitro with BERs as low as 0.4 calculated, where a BER of 1 conceptually represents a scenario where in vitro activity is happening at 

concentrations equivalent to consumer exposures. Higher tier testing could be useful to determine the in vivo significance of the in 

vitro results and the likelihood of adverse effects from scenarios resulting in a BER <1. 

These results build confidence that a low-tier NGRA can distinguish high risk and low risk exposures. 

Results

• Clinical exposure data were available for 6 of the 8 chemicals enabling an L3 PBK model to be built. 

Clinical data were not available for Prochloraz and Climbazole and so an L2 Cmax estimate is the highest 

available for these chemicals and their use scenarios. 

• For 5 chemicals the lowest PoD came from the in vitro pharmacological profiling (IPP), for 3 chemicals the 

lowest PoD came from the MCF7 transcriptomics and for 1 chemical the lowest PoD came from the 

HepaRG transcriptomics data. 

• For the chosen comparators, their known mechanism of endocrine activity was detected in the 

pharmacological profiling apart from 4-methylbenzylidene camphor that did not produce estrogen or 

androgen activity in the in vitro systems tested. Prochloraz and Aminoglutethimide are known to cause 

steroidogenic effects and both inhibited aromatase enzyme, along with Climbazole in vitro, with varying 

potencies. 

• BERs were calculated for all exposure scenarios using the plasma Cmax and the lowest in vitro NAM PoD 

ranging from 0.4 (10% OMC in a sunscreen) to 21 (0.2% Climbazole in a face cream) for the test chemicals; 

and 0.00002 (Ingestion of 2.5 mg Prochloraz) to 0.08 (4% 4-MBC in a sunscreen) for the high-risk 

comparator chemical use scenarios.  Fig. 4 below shows the result of plotting the BERs calculated for all 

the use scenarios, where “PBK level: highest” uses L3 predictions where possible but combines L2 for 

Prochloraz and Climbazole. 

Chemical Plasma Cmax 
(µM) [PBK 
level]

Lowest NAM Bioactivity PoD (µM) [assay]

Octocrylene 0.027 [L3] 0.16 – Cholescystokinin receptor, pregnane X 
receptor, Progesterone receptor

Octylmethoxycinnamate 0.032 [L3] 0.032 – MCF7 HTTr probe level

Butylated Hydroxytoluene 0.064 [L3] 0.55 – HepaRG HTTr probe level

Climbazole 0.0034 [L2] 0.073 – Aromatase enzyme

4-Methylbenzylidene 
camphor

1.46 [L3] 0.12 – Progesterone receptor

Diethylstilbestrol 0.11 [L3] 0.00038 – MCF7 HTTr probe level. 
N.B. <0.001 for Estrogen receptor

Prochloraz (residue) 0.003 [L2] 0.0029 – MCF7 HTTr probe level 
N.B. 0.021 for Aromatase enzyme

Prochloraz (poisoning) 5.96 [L2] 0.0029 – MCF7 HTTr probe level
N.B. 0.021 for Aromatase enzyme

Aminoglutethimide 25.5 [L3] 0.46 – Aromatase enzyme

Fig. 2. Overview plot of PoDs and exposures per chemical. Blue 
regions represent the exposure estimates for a low risk scenario, whilst 
orange regions represent the exposure estimates for a high risk 
scenario. PoDs are described in the key to the right and are plotted for 
all chemicals. BIFROST HTTRr global PoDs refer to the probe level PoD 
from the transcriptomics; CSP refers to the cellular stress assay and IPP 
refers to the in vitro pharmacological profiling. Where PoDs are to the 
left of the plotted exposure, the NAM assays detect activity at levels 
below the predicted exposures. 

Fig. 3 BER plots for all chemical use scenarios at all PBK levels. Blue dots represent low risk scenarios, orange dots represent high risk 
scenarios and the dotted line is plotted at BER = 1. Conceptually a BER < 1 could indicate low risk, although more detail on an evaluation 
activity to benchmark this can be found in the Middleton et al., poster.
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Table 2. Overview of predicted plasma Cmax values and the leading PoDs from the NAM bioactivity 
assays. 
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