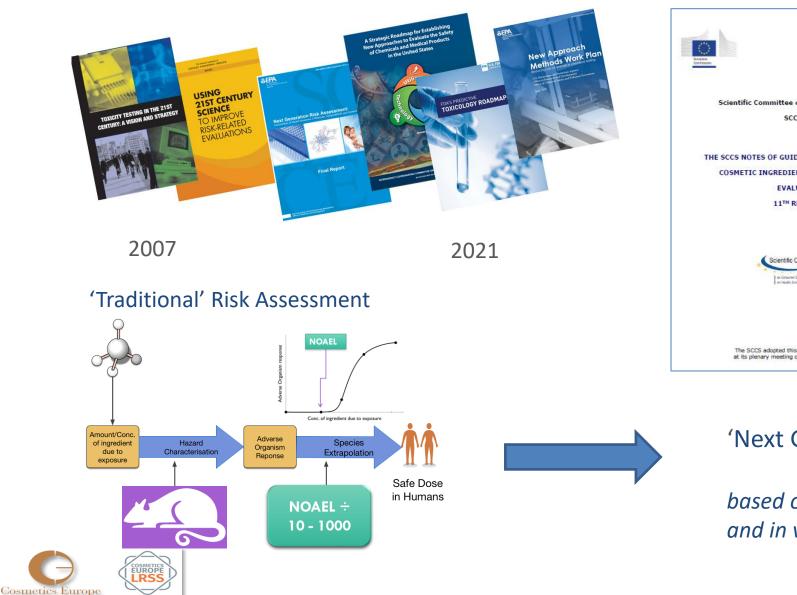
# Integration of Kinetics and Dynamics Data for Risk Assessment Purposes

Maria Baltazar On behalf of the case study team Cosmetics Europe

29<sup>th</sup> March 2022

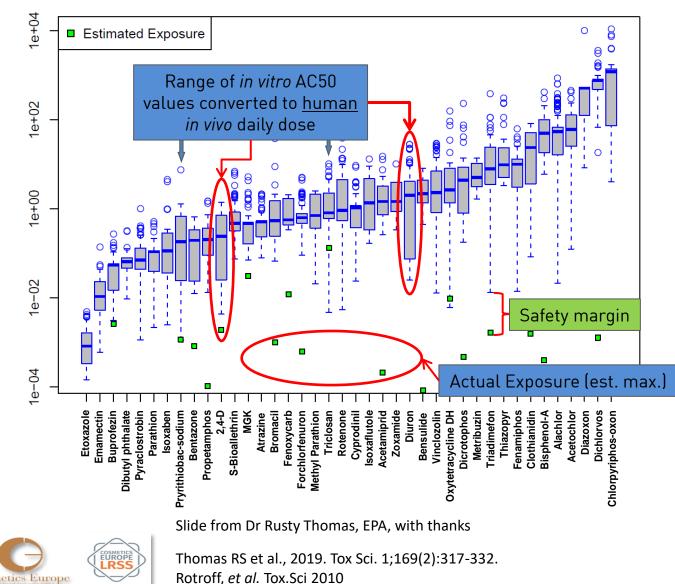





## Outline

- 1. Case studies background & principles
- 2. Benzophenone-4 case study
- 3. Next steps & conclusions



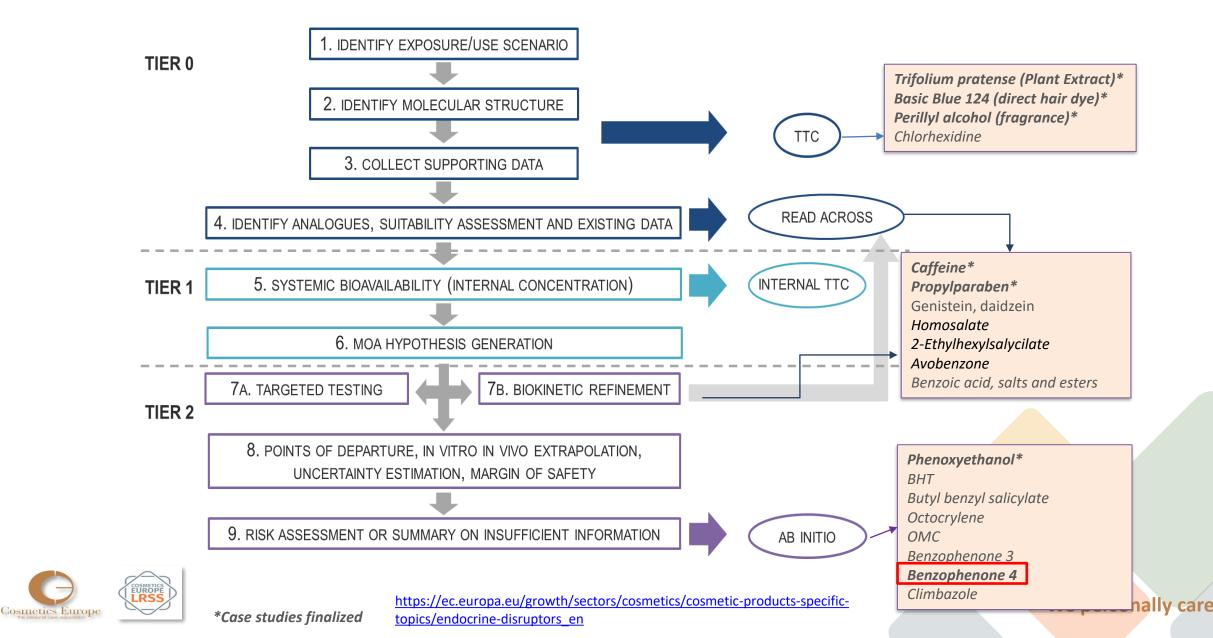

## **Context of the ab initio NGRA case studies**



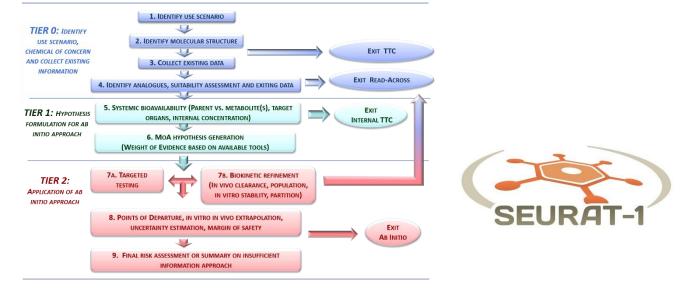


## **Paradigm shift for systemic safety - Protection not Prediction**

**Distributions of Oral Equivalent Values and Predicted Chronic Exposures** 




Cosmetics Europe


The hypothesis underpinning this type of NGRA is that if there is no bioactivity observed at consumerrelevant concentrations, there can be no adverse health effects.



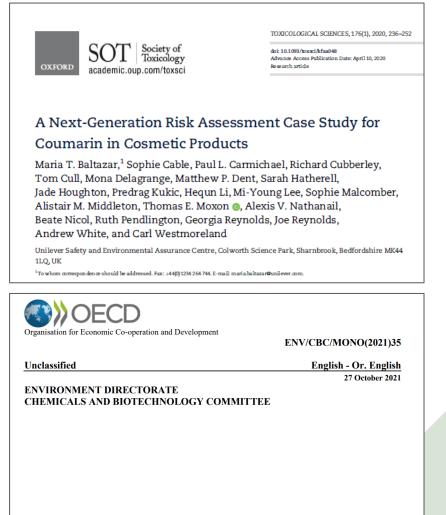
## LRSS systemic Toxicity case studies



## Guiding principles for the *ab initio* NGRA applied to the Benzophenone-4 case study



#### Computational Toxicology 7 (2018) 20-26



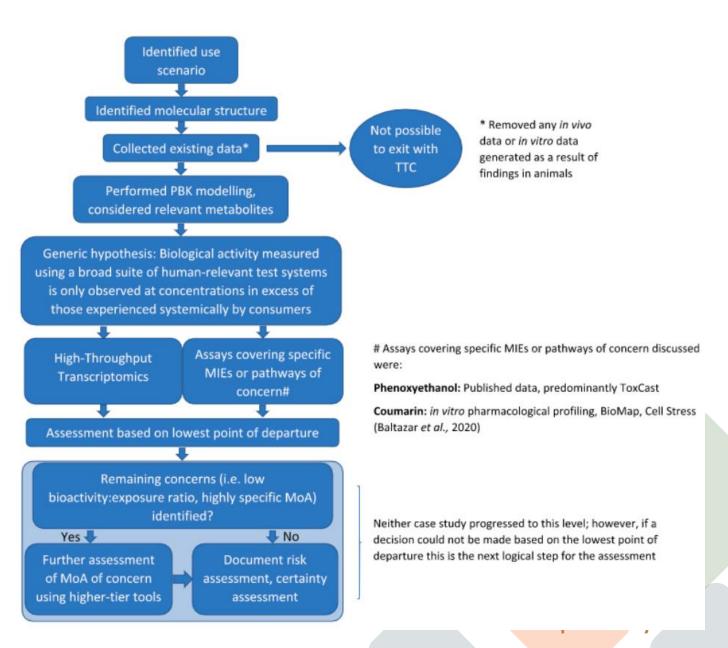

Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients



Matthew Dent<sup>a,\*</sup>, Renata Teixeira Amaral<sup>b</sup>, Pedro Amores Da Silva<sup>b</sup>, Jay Ansell<sup>c</sup>, Fanny Boisleve<sup>d</sup>, Masato Hatao<sup>e</sup>, Akihiko Hirose<sup>f</sup>, Yutaka Kasai<sup>g</sup>, Petra Kern<sup>h</sup>, Reinhard Kreiling<sup>i</sup>, Stanley Milstein<sup>j</sup>, Beta Montemayor<sup>k</sup>, Julcemara Oliveira<sup>l</sup>, Andrea Richarz<sup>m</sup>, Rob Taalman<sup>n</sup>, Eric Vaillancourt<sup>o</sup>, Rajeshwar Verma<sup>j</sup>, Nashira Vieira O'Reilly Cabral Posada<sup>l</sup>, Craig Weiss<sup>p</sup>, Hajime Kojima<sup>f</sup>



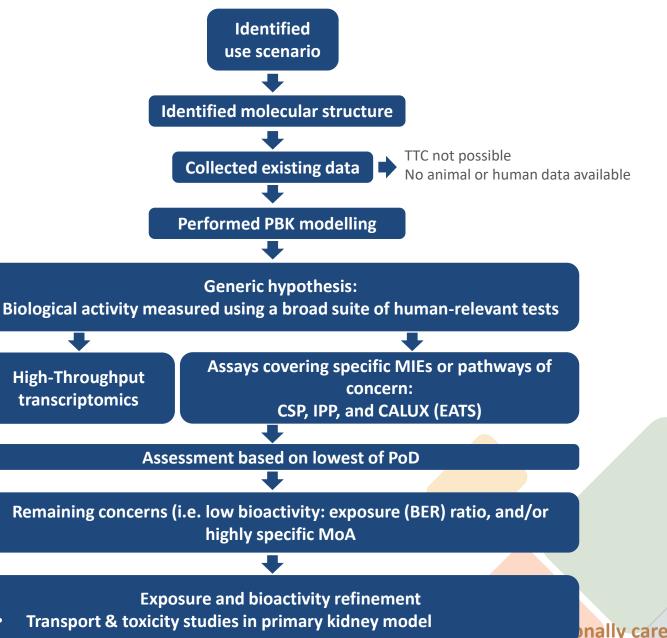



Case Study on use of an Integrated Approach for Testing and Assessment (IATA) for Systemic Toxicity of Phenoxyethanol when included at 1% in a body lotion

Series on Testing and Assessment, No. 349



## Benzophenone-4 (BP-4) case study: Objectives & Approach


- In 2019, the European Commission defined a list of 28 cosmetic ingredients with potential endocrine activity
- BP-4 is one of the 28 chemicals for which the call for data took place.
- Objective of the case studies & BP-4:
  - To assess whether a tiered NGRA approach is sufficiently protective for these types of ingredients following the framework and NAMs applied in previous case studies





## Benzophenone-4 (BP-4) case study: Objectives & Approach

- In 2019, the European Commission defined a list of 28 cosmetic ingredients with potential endocrine activity
- BP-4 is one of the 28 chemicals for which the call for data took place.
- Objective of the case studies & BP-4:
  - To assess whether a tiered NGRA approach is sufficiently protective for these types of ingredients following the framework and NAMs applied in previous case studies

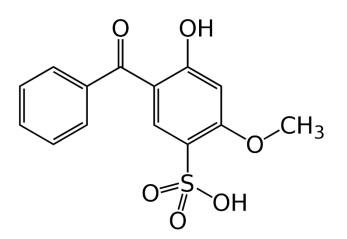




CSP= cell stress panel IPP- in vitro pharmacological profiling

Dent et al 2021. Reg. Tox. Pharm. Volume 125, 105026.

## **Tiered approach for Exposure estimation**


#### Level 0: Characterise exposure scenario

- 5% in Sunscreen product,
- 18g/day, two times, 9g/application,
- On body and face 17500cm2 (total body area)

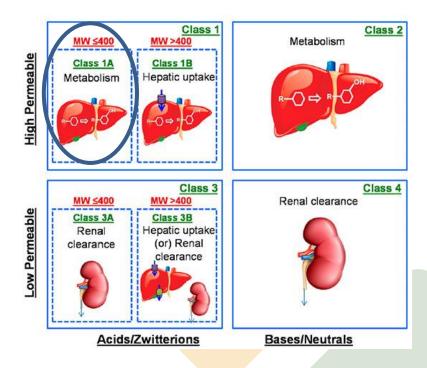
Level 1: PBK model built with in silico parameters only & sensitivity analysis

- Predicted plasma  $C_{max}$  at steady state =  $33\mu M$
- Predicted sensitive parameters
- Fup (Fraction unbound in plasma)
- Liver CL<sub>int</sub> (intrinsic clearance)
- Dermis water partition coefficient
- Dermis diffusivity

Level 2: PBK model built with vitro parameters



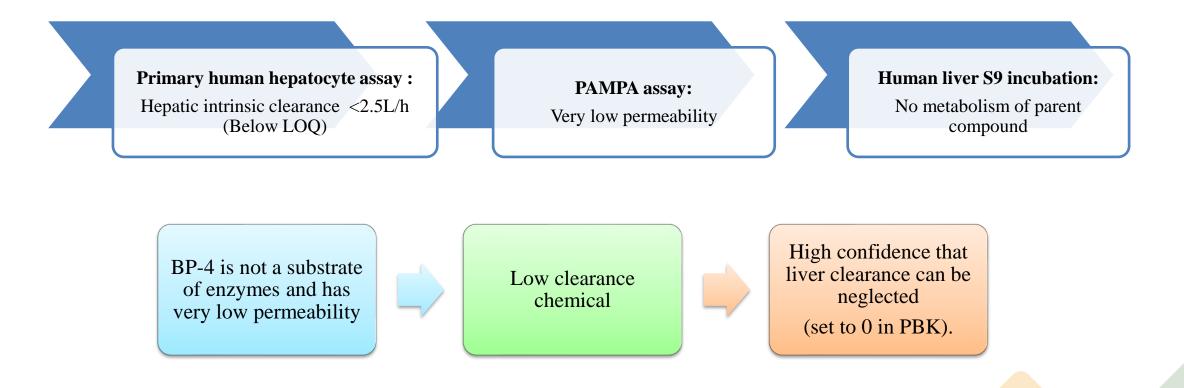





## **Tiered approach for Exposure estimation: LEVEL 2 PBK Model**

|                                                                                          | Value                        | Source                                                                                                                                           |
|------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Molecular weight                                                                         | 308.3 g/mol                  |                                                                                                                                                  |
| Log P                                                                                    | 1.28                         | ADMET predictor                                                                                                                                  |
| рКа                                                                                      | acid 8.89, acid 0.5          | ADMET predictor                                                                                                                                  |
| Fraction unbound in plasma ( ${ m f_{up}}$ )                                             | 0.0157                       | Measured, Pharmacelsus                                                                                                                           |
| Blood: plasma ratio                                                                      | 0.6                          | Measured, Pharmacelsus                                                                                                                           |
| Hepatic intrinsic clearance (L/h)                                                        | <2.5L/h Below LOQ            | Measured, plated primary human hepatocyte assay, Pharmacelsus                                                                                    |
| ECCS classification                                                                      | Class 1A metabolism          | Varma et al., 2015                                                                                                                               |
| Renal excretion                                                                          | 0.11L/h                      | GFR*Fup                                                                                                                                          |
| Dermal absorption parameters:<br>Partition coefficient and diffusivity<br>in skin layers | fitted against skin pen data | Measured, Eurofins, <i>Ex vivo</i> skin<br>penetration study designed<br>according to <i>Davis et al. 2011</i><br>meeting OECD and SCCS guidance |

**ECCS classification** 


(Extended Clearance Classification System)





Davies et al., 2011. Toxicological Sciences, Volume 119, Issue 2, Pages 308–318.

## Tiered approach for Exposure estimation: Further refinement on hepatic clearance

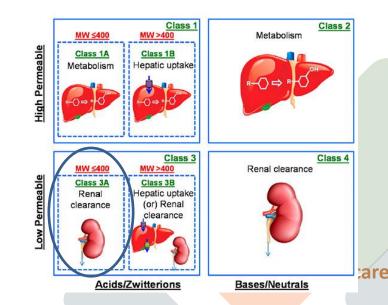


If ECCS classification is not Class 1A, what's the route of elimination? How is BP-4 taken up by the cells?



## **Tiered approach for Exposure estimation: Further refinement on renal clearance**

#### In silico predictions:


- BP-4 is an anion sulphonate
- BP-4 is predicted to be substrate of several transporters in kidney and liver
- Likely to be a substrate of Organic anion transporters (OATs)
- Renal clearance is likely to be higher than GFR\*Fup

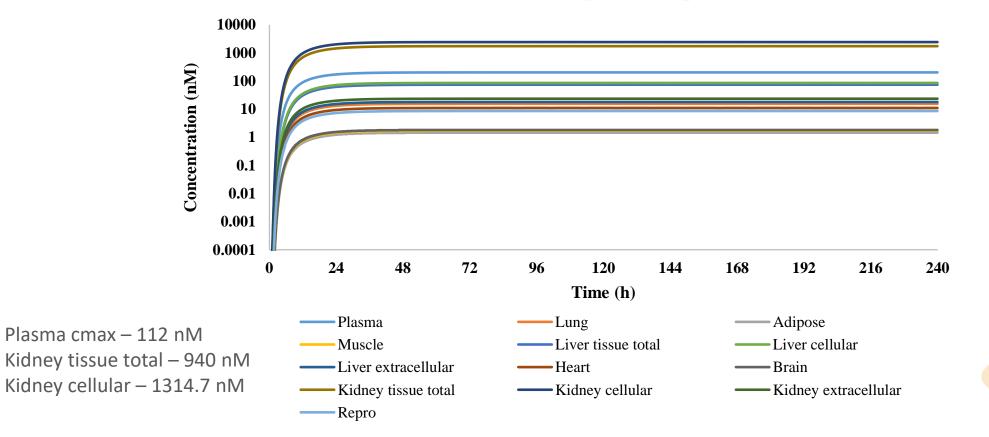
Transporter studies in transfected kidney cells in two different assays (uptake assay and vesicular assay)

- Influx transporter substrate- OAT1, OAT2, OAT3
- Efflux transporter substrate- MRP4, BCRP
- Vmax and Km calculated for each transporter

#### **Updated PBK model:**

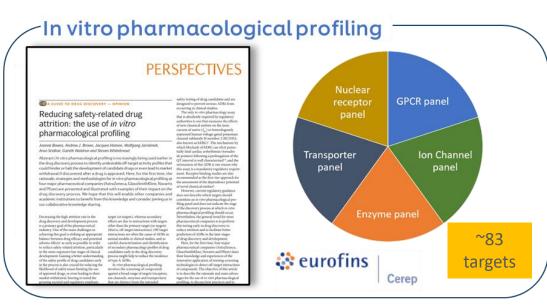
- Set BP-4's distribution to each compartment to be modelled as permeability-limited uptake; i.e. tissue permeability is set to 0.
- Active transport was modelled by incorporating kinetic and abundance parameters into the model




High confidence that BP-4 is substrate of transporters and actively transporter into the liver and kidney

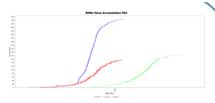
**Revised ECCS: Class 3A** 

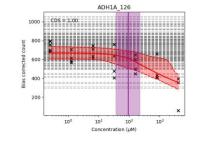



## **Deterministic PBK model simulation on Cmax**

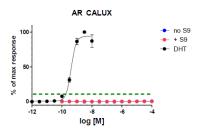
#### **BP4-Systemic Exposure-repeat**







## **Characterisation of bioactivity- key NAMs**




### High-Throughput transcriptomics (HTTr)

- TempO-se technology full gene panel
- 24hr exposure
- 7 concentrations
- 3 cell lines: HepG2, MCF7, and HepaRG
- Dose-response analysis using BMDExpress2 and BIFROST model





- **EATS activity:** estrogenic, androgenic, thyroidogenic and steroidogenesis
- CALUX bioassays and binding assays: TTR-TRβ- and hTPO
- U2-OS incorporating the firefly luciferase reporter gene coupled to Responsive Elements (REs)
- **12 concentrations**. Calculation of AC50, LOEC and NOEC



#### Cell stress panel (CSP)

- 36 biomarkers covering 10 cell stress pathways
- HepG2
- 24hr exposure
- 8 concentrations
- Dose-response analysis using BIFROST model

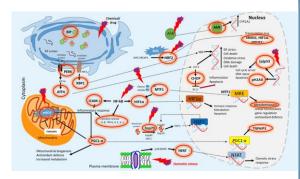



Image kindly provided by Paul Walker (Cyprotex)

Hatherell et al 2020. Tox Sci, 176, Issue 1, 11-33



Cosmetics Europe

Reynolds et al 2020. Computational Toxicology, Volume 16, 100138 Baltazar et al, 2020. Tox Sci, 176, Issue 1, 236–252

## **Results from the 3 key NAMs- Deriving Points of Departure (PoDs)**

#### In vitro Pharmacological profiling

- Tested up to 10 uM
- ~83 targets compiled by Cosmetics Europe Safety pharmacology WG
- No hits

## EATS

Cosmetics Europ

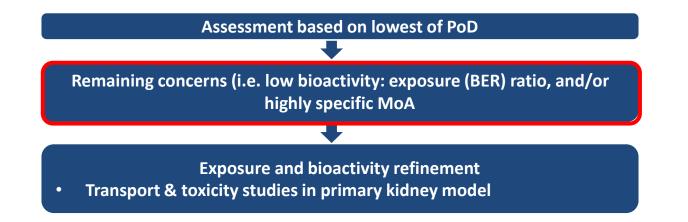

•No agonism or antagonism of ER, AR or TR and no effect on production of oestrogens or androgens ±S9
•Activity towards hTPO and TTR was found at high concentrations (LOEC= 300-600 μM).

| Platform/NAM      | Cell type | Analysis method     | PoD (μM) |
|-------------------|-----------|---------------------|----------|
| Cell stress panel | HepG2     | BIFROST             | 140      |
| HTTr              | HepG2     | BIFROST             | 4.2      |
| HTTr              | HepaRG    | BIFROST             | 52       |
| HTTr              | MCF7      | BIFROST             | 5.5      |
| HTTr              | HepaRG    | Lowest pathway BMDL | 650      |
| HTTr              | HepG2     | Lowest pathway BMDL | 240      |
| HTTr              | MCF7      | Lowest pathway BMDL | 280      |

Concentrations (μM) 0.128, 0.64, 3.2, 16, 80, 400, 2000

Dose response modelling using various methods- BMDExpress2 & BIFROST

Reynolds et al 2020. Computational Toxicology, Volume 16, 100138 Hatherell et al 2020. Tox Sci, 176, Issue 1, 11-33 Baltazar et al, 2020. Tox Sci, 176, Issue 1, 236–252,



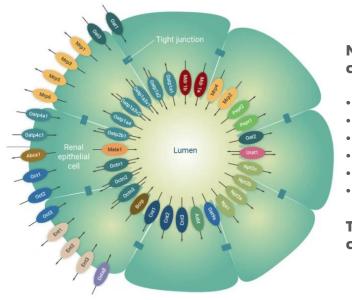

## **Bioactivity: exposure ratio calculation**

Ratio between minimum PoD and predicted Cmax exposure

Minimum PoD: 4.2μM (HTTr, HepG2, BIFROST) Plasma Cmax: 0.112 μM

BER = 4.2 / 0.112 ~ 37.5






## Next steps: Refinement of exposure and bioactivity – primary kidney model

**Rationale:** 

- BP-4 predicted exposure is higher in the kidney are the PoDs derived in these cells models sufficiently protective?
- Limited evidence of presence of these transporters in HepG2, MCF7 and HepaRG
- Transporter studies were performed with transfected cell models overexpressing the transportersability to evaluate the full kinetics where a mixture of the transporters is present

#### Newcells aProximate<sup>™</sup> platform



Nephrotoxicity (3 donors, duplicate per donor), 8 concentrations, 24h and 72h timepoints:

- KIM-1
- NGAL
- Clusterin
- TEER (Day 0 and Day 3)
- ATP
- LDH

Toxicogenomics (3 donors, duplicate per donor), 8 concentrations, 24h and 72h timepoints:



## **Conclusion & Next steps**

- Case studies have demonstrated it is possible to integrate exposure estimates and bioactivity points of departure to make a safety decision.
- This case study showed that the approach is exposure-led and follows a tiered approach for both exposure and bioactivity
  - Bespoke NAMs can be added to the NGRA to fill gaps identified along the process
- 'Early tier' in vitro screening tools show promise for use in a protective rather than predictive capacity.
- Finalise the data generation & interpretation for BP-4 & rest of the 4 case studies (BHT, octocrylene, OMC, climbazole)



## Acknowledgements

| Matthew Dent     | Predrag Kukic                                 |
|------------------|-----------------------------------------------|
| Sophie Cable     | Andrew White                                  |
| Hequn Li         | Richard Cubberley                             |
| Nicky Hewitt     | Sandrine Spriggs                              |
| Beate Nicol      | Ruth Pendlington                              |
| Joe Reynolds     | Katie Przybylak                               |
| Sophie Malcomber | Cosmetics Europe/LRSS Case study Leaders Team |
| Sharon Scott     |                                               |
| Jade Houghton    | Pharmacelsus                                  |
|                  | Eurofins                                      |
|                  | BioClavis                                     |
|                  | Cyprotex                                      |
|                  | SOLVO                                         |
|                  | BioDetection Systems                          |
|                  | NewCells                                      |

