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Introduction

Physiologically-Based Kinetics (PBK) modelling is an integral part of the tool set used in Next Generation Risk Assessment (NGRA) of ingredients in consumer products (Moxon,
et al., 2020, Baltazar, et al. 2020). Accurate predictions of the exposure allow for comparison to biological effects, and an understanding of the risk to consumers. However,
providing confidence in these exposure predictions without the use of in vivo data for validation can prove difficult. This work proposes and outlines the use of a PBK
framework, with application to a number of case study chemicals (coumarin presented here) in hypothetical products, and further sets out a vision for future development of
the framework towards a future goal of a fully probabilistic PBK framework.

Current Framework & Case Study

The framework breaks the modelling down into 3 levels for a novel chemical:
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