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For many years, a method that allowed systemic toxicity safety assessments to be conducted without generating new animal test data seemed out of reach. However, several different research groups
and regulatory authorities are beginning to use a variety of in silico, in chemico and in vitro techniques to inform safety decisions. To manage this transition to animal-free safety assessments responsibly,
it is important to ensure that the level of protection offered by a safety assessment based on new approach methodologies (NAMs), is at least as high as that provided by a safety assessment based on
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: Terd - traditional animal studies. To this end, we have developed an evaluation strategy to assess both the level of protection and the utility offered by a NAM-based systemic safety ‘toolbox’. We have
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previously proposed a NAM-based toolbox for integration into a risk assessment framework for the evaluation of systemic toxicity (Middleton et al, 2022; Cable et al 2024, submitted) and Fig.1 shows a

— s e Q tiered approach to NGRA following the ICCR principles, and as utilised through various case studies (Dent et al 2018; Baltazar et al, 2020; Rajagopal et al, 2022; Wood et al, 2024)
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progress to data generation for evaluation of the NAM-based systemic toolbox and
workflow.

STEP 3: EVALUATE TOOLBOX

This toolbox and workflow is intended for use in quantitative early-tier risk assessment, where the primary goal is protectiveness: i.e.
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