Next Generation Risk Assessment of the Anti-Androgen Flutamide Including the Contribution of Its Active Metabolite Hydroxyflutamide

Tessa van Tongeren

Unilever SEAC, UK

Wageningen University, Division of Toxicology, NL

British Toxicology Society congress 2023 Symposium 7: PBPK Modelling

Anti-androgen Flutamide (FLU) is bioactivated to Hydroxyflutamide (HF) in the liver

- In vivo anti-androgenicity FLU predominantly due to metabolite HF
- Not captured in *in vitro* androgen receptor (AR) reporter gene assay of only parent FLU

Objective:

Perform PBK modelling-based QIVIVE of the anti-androgenic activity of FLU in humans including anti-androgenic activity of HF

PBK modelling-based QIVIVE

Created with BioRender.com

PBK modelling-based QIVIVE

CALUX assay

Concentration-dependent antagonistic activity of **FLU** and **HF** on the DHT-mediated luciferase induction in the U2OS AR-

Step 2 PBK model development describing FLU and HF kinetics in human

Required: Hepatic kinetic parameters FLU and HF

Metabolic scheme FLU and HF in human liver

Required: In vitro determination hepatic kinetic parameters FLU and HF

FLU incubation with

Step 2

 Human liver microsomes (HLM)

HF incubation with

 Human liver cells (HepaRG)

PBK model development describing FLU and HF kinetics in human using

GastroPlus

Kinetic parameter	Value in vitro			
V _{max} FLU to HF To human PK data	0.53 ± 0.08 nmol/min/mg protein			
K _m FLU to HF	Parameters	FLU	HF	
CL _{int} FLU CL _{int} HE	MW (g/mol)	276.22 ^a	292.21ª	
	- LogP	3.35 ^ª	2.70 ^a	
	Solubility at 25°C (mg/mL)	5.7*10 ^{-3b}	0.16 ^c	
	рКа	Acid 10.54 ^b	Acid 0.84 ^b	
		Base 0.83 ^b		
	P_{eff} (x 10 ⁻⁴ cm/s)	5.25 ^d		
	Fub in vivo	0.20 ^b	0.32 ^b	
	R _{b2p}	0.83 ^b	0.84 ^b	
	^a Kim et al. (2016).			

^cWishart et al. (2007). ^dZuo et al. (2000).

Sensitivity analysis

Model parameterized for a standard human (Brown et al. 1997)

Population	American male
Age	30
Weight	70 kg
Dose	250 mg FLU 3x a day repeated dosing for 9 days (Radwanski et al. 1989)

Sensitivity coefficient

PK data from Doser et al. (1997)		
Population	Healthy females	
Age	na	
Weight	normal	
n	19	
Dose	Single dose of 250 mg FLU	

Step 3

PBK model validation with population simulation

PK data from Radwanski et al. (1989)			
Population	Healthy geriatric males		
Age (mean)	66		
Weight (mean)	89		
n	19		
Dose	250 mg FLU 3x a day repeated dosing for 9 days		

Distribution of the predictions over a healthy

American Population:

n=100; male: female = 50: 50 (20-80 yo, 50-110 kg)

Confirms validity PBK model describing FLU and HF kinetics in humans

dose-response data, -HF using the PBK model developed

PBK modelling-based in vitro to in vivo extrapolation approach

1. Correct nominal in vitro concentrations of FLU in AR-CALUX assay for

in vitro protein binding to obtain free in vitro concentrations FLU

free *in vitro* concentration FLU = *in vitro* concentration FLU * $f_{ub in vitro, FLU}$

2. Surrogate AR-CALUX based free in vitro concentrations FLU to free in vivo C_{max} values of FLU

free *in vitro* concentration FLU = free *in vivo* $C_{max, FLU}$

3. Model FLU doses which are required to reach these free in vivo $\rm C_{max}$ values of FLU using PBK model

	FLU	HF
F _{ub in vitro}	0.5	0.57
F _{ub in vivo}	0.2	0.32

dose-response data, **+HF** using the PBK model developed

PBK modelling-based in vitro to in vivo extrapolation approach

1. Surrogate AR-CALUX based free *in vitro* concentrations FLU to combined free *in vivo* C_{max} FLU +HF expressed in FLU equivalents

Using the toxic equivalency factor (TEF)

 $\mathsf{TEF}_{\mathsf{HF}} = \mathsf{IC}_{\mathsf{50, FLU}} / \mathsf{IC}_{\mathsf{50, HF}}$

	FLU	HF
F _{ub in vitro}	0.5	0.57
F _{ub in vivo}	0.2	0.32
IC ₅₀ (μΜ)	1.14	0.05
TEF	1	23

free *in vitro* concentrations FLU = combined free C_{max} of FLU and HF expressed in FLU equivalents

$$= C_{\max, FLU} * FLU f_{ub in vivo} * TEF_{FLU} + C_{\max, HF} * HF f_{ub in vivo} * TEF_{HF}$$
Free in vivo $C_{\max, FLU}$
Free in vivo $C_{\max, FLU}$
Free in vivo $C_{\max, HF as FLUeq}$

2. Model FLU doses which are required to reach these combined free C_{max} FLU and HF expressed in FLU equivalents

Assumptions TEF-based QIVIVE

3 assumptions

- 1. FLU and HF have same mode of action 150 AR inactivation 2. Concentration response curves FLU and HF are parallel Induction (% max DHT) **100**· Hillslope FLU vs HF has p value of 0.6985, so curves parallel FLU + HF
- 3. Toxicity is additive

Evaluation of the predicted dose-dependent anti-androgenic effects of

FLU, – and +HF, including BMD analysis of the predicted dose-response data

Step 5

Including the contribution of HF in QIVIVE predicting the *in vivo* anti-androgenic activity of FLU results in **440 fold** lower BMDL₀₅

Evaluation of the predicted dose-dependent anti-androgenic effects of

FLU, – and +HF, including BMD analysis of the predicted dose-response data

Step 5

- PoD FLU HF comparable to therapeutic active doses FLU
- PoD FLU +HF 35 fold lower than lowest reported NOAEL

PBK modelling-based QIVIVE of the *in vitro* anti-androgenic response of FLU including the contribution of HF is protective to predict *in vivo* anti-androgenic activity

Evaluation of the predicted dose-dependent anti-androgenic effects of

FLU, – and +HF, including BMD analysis of the predicted dose-response data

Step 5

35 fold difference in *in vitro* derived PoD and animal derived PoD

- Rat lower conversion rate FLU to HF and lower FLU clearance
- At similar exposure level FLU and bioavailability, humans expected to have higher HF levels than rats

Exchanging human V_{max} with rat V_{max} in PBK model: BMDL₀₅ of FLU +HF = 0.014 mg/kg (

= 17-fold lower than lowest animal-PoD

At similar exposure level FLU and bioavailability, in humans higher anti-androgenicity, justifying lower PoD

Discussion & conclusion

- In vitro derived PoD more conservative than animal derived PoD
 - Species differences in toxicokinetics
 - Disruption at molecular versus organ/tissue level
- Use of uncertainty factors (UFs) in IVIVE
 - Interindividual differences
 - UF interspecies differences exchanged by UF for uncertainty using *in vitro* and *in silico* assays
- Including contribution of toxicokinetics and toxicodynamics metabolite important in setting PoD based on PBK-modelling based IVIVE
- *In vitro* derived PoD FLU +HF protective for human health
- NGRA not to predict animal PoDs but to protect human health

Acknowledgement

Unilever

Prof. dr. Paul Carmichael

Dr. Hequn Li

Dr. Matthew Dent

Colleagues at Unilever SEAC

Wageningen University and Research

Prof. dr. ir. Ivonne Rietjens

Colleagues at Division of Toxicology

