A machine learning pipeline for climate impacts: crop models versus deep learners

Joseph Gallear¹², Andrew J Challinor¹, Netta Cohen², Anthony G Cohn², Julia Chatterton³

Contact: eejg@leeds.ac.uk

¹ University of Leeds, School of earth & Environment, ²University of Leeds School of Computing, ³Safety & Environmental Assurance Centre, Unilever R&D

UNIVERSITY OF LEEDS

Watson J., Challinor A J., Fricker T E., Ferro C A T., (2015)., Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop Model., Climatic Change., **132**., (1): 93-109

Aims:

- Which machine learning frameworks best outperform the GLAM crop model? • How much training data is required for machine learning frameworks to outperform crop modelling?
- How complex does a machine learning framework need to be to outperform a crop model?
- Can deep learning be successfully applied to global gridded weather crop yield relationships?

Preliminary Model fits and spatial predictions:

Background:

Model fit is displayed where test years contain a low number of outlier values.

Next steps:

Spatially de-trend the weather data by clustering based on soil properties and homogenous weather (Figure 8 displays the principal components of the data)

Use an oversampling technique such as SMOTE-R to reduce overfitting

- Incorporate LSTM cells into NN models
- test Bayesian model frameworks
- Test auto encoding methods for pre-processing

Fig 8. 3 weather and soil principal components showing spatial patterns of each of the major components of variation.

- Machine learning is defined as "A computer learning from some experience E with respect to some task T and some performance measure P, if its performance on T as measured by P, improves with experience E" – (Thomas Mitchell, 1997).
- Machine learning frameworks tested so far include random forest, feed forward

References Elavarasan D., Vincent D R., Sharma V., Zomaya A Y., Srinivasan K., (2018)., Forecasting yield by integrating agrarian factors and machine learning models: A survey., Computers and electronics in agriculture., 155., [No issue no.]: 257- 252 Mitchell T, (1997), Machine learning, New York, McGraw-Hill

- Spatially model skill varies with the standard deviation of each department (Figure 7 a & c).
- Model skill also varied greatest from GLAM in areas where the GLAM yield gap parameter was needed to correct for non-weather spatial factors
- Model fits (Figure 7 b & d) were largely affected by the combination of training and

testing years as well as choice of feature scaling technique. This is likely due to low initial data quantity.

Fig 7. RMSE **(a)** and model fit **(b)** of a convolutional neural network, and dense feed forward neural network **(c) (d).** The convolutional network uses 1 dimensional convolutions to read each growing season as a sequence, whereas the dense feed forward network uses unordered daily values. In model fits **(b)** & **(d)** grey points indicate model fit on the training years with red points denoting the first 5 year test period. Fit on first five years is shown here to display model fit with minimal outliers in test set.

To build a fair comparison with GLAM, The following steps will be incorporated into the methodology:

Fig 1. (a) A schematic of a feed forward neural network with fully connected layers as opposed to **(b)** a method of training a neural network by incorporating each growing season as an ordered sequence using convolutional layers.

and 1 dimensional convolutional neural nets, and nearest neighbors regression.

Acknowledgements

Special thanks to James Franke, Christoph Müller & Alex Ruane for providing access to the GGCMI phase 2 dataset which facilitated discussions which led to this work.