# Safety & Environmental Assurance Centre



## Rheological characterisation of human lung surfactant monolayers and the effects of exposure to inhaled compounds

Hugh Barlow<sup>\*</sup>, Sreyoshee Sengupta<sup>†</sup>, Iris Muller<sup>\*</sup>, Sophie Cable<sup>\*</sup>, Maria Baltazar<sup>\*</sup>, Jorid Sørli<sup>†</sup>

\*Unilever Safety and Environmental Assurance Centre, Colworth Park, Sharnbrook, Bedfordshire, MK44 1LQ, United Kingdom <sup>†</sup> National Research Centre for the Working Environment, Lersø parkalle 105, 2100, Copenhagen, Denmark



## 1) Lung Surfactant



- The lung surfactant (LS) lining is a thin liquid film composed of phospholipids and proteins which covers the air-liquid interface in the alveoli.
- LS modifies the surface pressure in the deep lung which reduces mechanical work during inhalation.
- Exposure to certain chemicals (e.g. hydrophobic polymers) is found to disrupt the function of lung surfactant, causing lung collapse [1-4].

Figure 1) Schematic of lung, alveolus (Biorender<sup>©</sup>) and phospholipid surfactant monolayer.

Can we predict the effects of certain inhaled compounds on human breathing by studying how chemical exposure changes surfactant monolayer rheology?

## 2) Experimental Setup

a) Aerosol device **HEPA filter** Air outlet **Droplet** Camera Motorized syringe pump Oscillator connected to QCM



#### Time

Figure 2. a) Illustration of the modified constrained surfactometer (CDS) setup [5]. LS (Curosurf©) solution droplet connected to syringe pump enabling dynamic cycling. Camera is used to measure curvature and wetting angle. Aerosol device replicates inhalation of chemicals in human lung.

b) Images of a droplet with volume cycled at fixed frequency allowing dynamic measurement of surface pressure at representative human breathing rate (0.3 Hz). Droplet oscillation replicates the dynamics of a human alveolus during inhalation.

## 3) Exposure Effects

- Droplets are exposed to aerosolised chemical.
- Response curve shows visible changes under chemical exposure, demonstrating reduction in elasticity.



Pre-exposure regime (LS)

Post-exposure regime (LS+Chemical)

Figure 4) Response curve measured for several cycles for LS solution droplet before, during and after exposure to aerosolised methyl dihydrojasmonate. Overlaid areas denote regions subjected to Fourier analysis.

## 4) Analysis

- Surface pressure behaviour accurately captured by fitting single Fourier mode thereby demonstrating the response to be within the regime of linear rheology.
- Method is effective to quantitatively assess the change in mechanical properties post-exposure.



Figure 5) Parametric curves of surface pressure and logarithmic area normalised by average area  $A_0$ . Solid lines correspond to single mode fit. a) Pure LS b) LS+Chemical (methyl dihydrojasmonate)

## 5) Conclusions & Future Work

- We have developed a novel method to quantitatively measure the effects of inhaled chemicals on LS rheology.
- Characterisation of rheology pre and post exposure for a variety of chemicals may link effects to physicochemical properties in order to develop predictive model.
- Procedure to be added to current approaches for Next Generation Risk Assessment.

#### References

- Scheepers, Paul T J et al. Journal of occupational medicine and toxicology (London, England) vol. 12 33. 8
- Epping G, Van Baarlen J, Van Der Valk PD. Int J Occup Med Environ Health. 2011 Dec;24(4):409-13
- Emilie Da Silva et al. Biochimica et Biophysica Acta (BBA) Biomembranes, vol. 1863, 1,2021, 183499, ISSN
- 0005-2736, 4. Søren T. Larsen et al., Toxicological Sciences, Volume 140, Issue 2, August 2014
- 5. Sørli JB et al. Am J Respir Cell Mol Biol. 2016 Mar;54(3):306-11. Contact: hugh.barlow@unilever.com