The Role of qAOPs in Exposure-Led NGRA: Benefits and Limitations

Alistair Middleton and Andrew White

12th World Congress on Alternatives and Animal Use in the Life Sciences

Safety without animal testing - Next Generation Risk Assessment (NGRA)

NGRA is defined as **an exposure-led**, **hypothesisdriven** risk assessment approach that **integrates New Approach Methodologies (NAMs)** to assure **safety without the use of animal testing**

Unilever

The hypothesis underpinning this type of NGRA is that **if there is no bioactivity observed at consumerrelevant concentrations, there can be no adverse health effects.**

Decision frameworks in NGRA

Skin Sensitisation

Reynolds et al (2021) Reg Tox Pharmacol, **127**, 105075

Berggren et al., 2017

Unilever

Thomas et al., 2019

DART

Rajagopal et al (2022). Front. Toxicol., 07 March 2022

Systemic safety

Exposure Estimation Collate Existing Information	Plasma C _{sas}	In Vitro Biological Activity Characterization Instal Fe0 deutsication SettingGreenkill Diversity Bread Cell Stress Panel HTT- Tempo	Actabolism refinement Increased Actabolism Margin of Exposure Suppose Actabolism Margin of Exposure Suppose Su	Sufficient des and corrison Conclusion Lowrisk conclusion Lowrisk conclusion asfety calculations.

Baltazar et al., (2020) Tox Sci , Volume 176, Issue 1, Pages 236–252

Inhalation

· –

Current status of AOPs

Unilever

Challenge 1: After ~10 years of development, only limited number of AOPs, many of which have not yet been verified (biological coverage). There's an issue of scale that needs to be addressed.

Challenge 2: At present there are 446 AOPs on AOP-Wiki. Assuming 5 KEs per AOP, that's over 2000 assays. - Toxcast has ~ 700 assays

Remaining AOPs to be defined

At present, a decision framework based only on AOPs is not feasible. However, AOPs can used as a knowledge base for enhancing a testing strategy

Skin allergy example: AOP-informed testing strategy

SARA: A Bayesian model describing statistical relationships between data associated with different KE, which can be used to predict the Margin of Exposure for a given scenario.

Challenge 3: acceptance and development of AOP-based statistical or machine learning based approaches for quantifying risk

(7)

qAOPs and NGRA decision frameworks

Using qAOPs at tier 2 for distinguishing between adaptive and adverse responses

Sulforaphane case study

- Sulforaphane is a plant compound found in cruciferous vegetables like ٠ broccoli, cabbage, cauliflower, and kale.
- Under normal consumption, the BER<1 indicating exposure is likely to trigger bioactivity.
- Sulforaphane is an activator of Nrf2.
- Is the sulforaphane triggering an adverse effect?

Figure 5. Centered 50% and 95% credible intervals summarizing the distribution of the bioactivity exposure ratio (BER) when using all available predicted Cmax estimates. Background colors indicate the assigned risk category for each benchmark chemical-exposure scenario assigned at stage 1 (blue-low, vellow-high). The verti-

Using qAOPs at tier 2 for distinguishing between adaptive and adverse responses

Sulforaphane case study

Unilever

- Various groups have built ODE-based mechanistic systems biology models of the Nrf2 regulatory network.
- Developing systems that are chemical-agnostic can be very challenging.
- On the other hand, chemically agnostic machine learning based approaches may be useful, but these will not necessarily be mechanistic.

Nrf2 response under increasing concentrations of SFN

..........

......

Discussion

- NGRA is tiered approach for making decisions without the use of animal data
- In many cases, protective safety decisions can be made without the use of AOPs ...
- ... and in the foreseeable future we can foresee use of AOPs to address specific concerns rather than a globally applicable solution, e.g.:
 - AOPs can be useful in designing either a tier 1 or 2 testing strategy when enough is known about an endpoint of concern (e.g. skin sensitisation).
 - Quantitative AOPs may also be helpful at tier 2 in distinguishing between adaptive and adverse effects
- qAOPs do not necessarily have to be fully mechanistic (i.e., systems biology) models, and other approaches should be considered (e.g., statistical or machine-learning based).

Thank You

seac.unilever.com

Extras...

