Development of a Next-Generation Risk Assessment Framework Informed by Adverse Outcome Pathways (AOPs)

Matt Dent

Unilever- Safety & Environmental Assurance Centre (SEAC)

Assuring inhalation safety: Inhalation exposure depends on product type and habits & practices

Several Unilever products lead to an unintentional inhalation exposure : Can we safely use x% of ingredient y in product z?

Household cleaning products

Hairsprays (pump and aerosol)

Shampoos

Anti-perspirant/ deodorant aerosols

Safety without animal testing - Next Generation Risk Assessment (NGRA)

NGRA is defined as **an exposure-led**, **hypothesisdriven** risk assessment approach that **integrates New Approach Methodologies (NAMs)** to assure **safety without the use of animal testing**

The hypothesis underpinning this type of NGRA is that **if there is no bioactivity observed at consumerrelevant concentrations, there can be no adverse health effects.**

Our Exposure-led NGRA approaches

DART

Rajagopal et al (2022). Front. Toxicol., 07 March 2022

Skin Sensitisation

Reynolds et al (2021) Reg Tox Pharmacol, 127, 105075

Inhalation

Systemic safety

Baltazar et al., (2020) Tox Sci, Volume 176, Issue 1, Pages 236–252

Next generation approaches for inhalation –identification of key areas of lung toxicity

APPLIED IN VITRO TOXICOLOGY Volume 4, Number 2, 2018 Mary Ann Liebert, Inc. DOI: 10.1089/aivt.2017.0034 **MEETING REPORT**

Air–Liquid Interface *In Vitro* Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations

Ghislaine Lacroix¹, Wolfgang Koch², Detlef Ritter², Arno C. Gutleb³, Søren Thor Larsen⁴, Thomas Loret¹, Filippo Zanetti⁵, Samuel Constant⁶, Savvina Chortarea^{7,8} Barbara Rothen-Rutishauser⁷, Pieter S. Hiemstra⁹, Emeric Frejafon¹, Philippe Hubert¹, Laura Gribaldo,¹⁰ Peter Kearns,¹¹ Jean-Marc Aublant,¹² Silvia Diabate^{1,3} Carsten Weiss¹³, Antoinette de Groot,¹⁴ and Ingeborg Kooter¹⁵

HHS Public Access

Author manuscript Toxicol In Vitro. Author manuscript; available in PMC 2019 September 25.

Published in final edited form as: *Toxicol In Vitro*. 2018 October ; 52: 131–145. doi:10.1016/j.tiv.2018.06.009.

Pathway-Based Predictive Approaches for Non-Animal Assessment of Acute Inhalation Hazard Determination

Amy J. Clippinger^a, David Allen^b, Holger Behrsing^c, Kelly A. BéruBé^d, Michael B. Bolger^e, Michael DeLorme^f, Marianna Gaça^g, Sean C. Gehen^h, Kyle Gloverⁱ, Patrick Hayden^j, Paul Hinderliter^k, Jon A. Hotchkiss^I, Anita Iskandar^m, Brain Keyserⁿ, Karsta Luettich^m, Lan Ma-Hock^o, Anna Maione^j, Patrudu Makenaⁿ, Jodie Melbourne^a, Lawrence Milchak^f, Sheung P. Ng^p, Alicia Paini^q, Kathryn Page^r, Grace Patlewicz^s, Pilar Prieto^q, Hans Raabe^c, Emily Reinke^t, Clive Roper^u, Jane Rose^v, Monita Sharma^a, Wayne Spooⁿ, Peter S. Thorne^w, Daniel M. Wilson^I, Annie M. Jarabek^x

Target Site Exposure	Molecular Initiating Events	Cellular Key Events	Tissue / Organ Key Events	Organism / Population Responses
 Solubility Vapor pressure Particle size, density, distribution Chemical reactivity 	 Oxidation of cellular molecules Acetylcholinesterase inhibition Cytochrome C oxidase inhibition DNA/protein alkylation Modulation of ion channels Receptor binding e.g., Activation of EGFR (via phosphorylation) Activation of TRPA1 receptor Activation of glucocorticoid receptor Activation/inhibition of G protein coupled receptors Inhibition of NMDA receptors Binding to hormone receptor 	 ROS formation Antioxidant (e.g., glutathione) depletion Inhibition of energy (ATP) production Cytotoxicity Collagen deposition Increased mucous production Cytoskeleton disruption Cytokine/chemokine production Surfactant depletion Modulation of signal transduction pathways Inhibition of nucleotide synthesis Protein modification Modulation of protein synthesis Effects on the blood Vitamin interference 	 Cell proliferation Inflammatory response Cell transformation Squamous cell metaplasia Loss of epithelial barrier function Reduced ciliary beat frequency Goblet (mucous) cell hyperplasia, metaplasia, and proliferation Respiratory failure Tracheitis Bronchiolitis Alveolitis Pulmonary edema Bronchoconstriction Alveolar distention Smooth muscle remodeling Change in lung mechanics (resistance, compliance, pressure-volume curves, 	Systemic toxicity Acute lethalit Target organ effects (e.g., hepatotoxicity) Airway hyperreactivity Chemical narcosis

General strategy to developing an inhalation toolbox

Upper Airway – The MucilAir™-HF cell system (Epithelix)

AIR-LIQUID INTERFACE LIQUID MucilAir[™] (epithelix.com)

Reconstituted cells system using human primary bronchial cell cocultured with human airway fibroblast.

Selection Criteria:

- Exposure at the ALI
- Stable cells system which allows repeated exposure
- Allows measurement of biomarkers of relevant AOPs
- Mechanistic approach; allowing measurement for mycolitic activity as well as for inflammation (AOP 148, 411, 424 & 425)

functionality	biomarker	acute	chronic
mycolitic activity	mucus secretion, cilia beating (CBF), mucociliary clearance (MCC)	irritation, enhanced chance of airway infection	goblet cell hyperplasia, asthma, COPD
barrier function	tissue integrity (TEER, LDH), cytokine/chemokine release, extracellular matrix accumulation	local cytotoxicity, inflammation	airway remodelling, Asthma, COPD, lung fibrosis

modified after Bustamante-Marin, et al. 2017

Lower Airway – The EpiAlveolar™ cell system (MatTek)

fibronecti Barosova et al., ACS Nano 2020, 14, 4, 3941-3956 chronic acute local cytotoxicity, airway remodelling/scarring, inflammation, wound healing lung fibrosis Modified Hanging Top Selection Criteria: - Exposure at the ALI Tissue Insert - Stable cells systems which allows - 6-Well Plate repeated exposure

- Mechanistic approach; allowing measurement oxidative stress and inflammation (AOP173)
- Co-culture of cells including immune competent cells/macrophages and fibroblast

modified after Bustamante-Marin, et al. 2017

Case Study

Hypothetical inclusion of a novel preservative in Hairsprays

Ongoing development of an Inhalation Framework

Hypothetical Case study – 0.25% of a novel preservative in a hairspray aerosol

We have applied this framework to the chemical polyhexamethyleneguanidine phosphate (PHMG) to look at exposures:

(a) for an hypothetical case study imagining it was a new ingredient for a hairspray.

(b) that are known to be adverse in humans after during normal used of household humidifiers (Park et al 2015. Indoor Air 25(6): 631-640).

Hypothetical Case study – 0.25% of a novel preservative in a hairspray aerosol

Chemical identify

Unilever

Polyhexamethyleneguanidine phosphate (n/x=1~2) (PHMG phosphate) CAS RN 89697-78-9

Assumptions:

- No existent animal or human
- No read-across available

Use scenario & Consumer habits and practices:

- Spray rate: 0.6 g/s
- Spray duration: 10s
- Number application per day: 1
- Breathing zone: 1 m³

Oligomer, MW= 500-700 g/mol

Hypothetical Case study – Tier 1 exposure assessment

This is a conservative approach that assumes that 100% of the substance in the consumer product or article will be released at once and homogenously into the room and there is no ventilation. The duration of exposure is 24 hours and all released material is 100% inhalable

1. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.15: Consumer exposure assessment Version 3.0 - July 2016

2. Steiling et al., 2014. : Principle considerations for the risk assessment of sprayed consumer products. Toxicology Letters 227 (2014) 41–49

Hypothetical Case study – Tier 2 - 2-Box Indoor Air Dispersion model developed by RIFM

	Spray rate (mg/min)	36000
	Inclusion level (%)	0.25
	Emission duration (min)	0.1667
	Number of applications	1
	Zone 1 (Box A) volume (m3)	1
Input	Zone 2 (Box B) volume (m3)	19.1
	Air flow (1 -> outside) (m3/min)	0
	Air flow (2 -> outside) (m3/min)	1.89
	Air flow (1 -> 2) (m3/min)	7.24
	Time in zone 1 (min)	1
	Time in zone 2 (min)	9
	Body weight (kg)	60
	Inhalation rate (L/min)	20
	Initial zone 1 concentration (mg/m3)	0
	Initial zone 2 concentration (mg/m3)	0
	Time step (min)	0.02
	Exposure duration (min)	10
¥	Mean zone 1 for 1st minute (mg/m3)	2.690339
tpu	Mean zone 2 for next 9 minutes	
DU.	(mg/m3)	0.505035
U	Time-weighted average (mg/m3)	0.7
	······································	

Images from: Steiling et al., 2014. Principle considerations for the risk assessment of sprayed consumer products. Toxicology Letters 227 (2014) 41–49

http://www.rifm.org/uploads /Inhalation%20Modeling%20 2-Box%20Webinar%201.17.201 2.pdf

Hypothetical Case study – Regional Lung Deposition Modelling

Hypothetical Case study – Regional Lung Deposition for repeated exposures

PHMG Humidifier exposures associated with adverse effects in humans

12

Parameters used to calculate Tier 1 screening assessment - airborne concentration (mg/m³):

- Concentration of PHMG in the disinfectant (μ g/ml): 1276 •
- Disinfectant volume (mL): 10
- Frequency (number of applications): 2 •
- Volume of the room (m³): 27
- Degree of ventilation: 1 (assumed no ventilation)

Airborne PHMG level estimated (mg/m3)

= <u>10 ml/addition × 2 additions ×1276 ug/ml x 1</u>

27 m³

 $= 0.95 \text{ mg/m}^3$

RIMPOUSA File Input Date Calculations Report Results Plot Results Help Get Started MMAD: 80 nr GSD: 1 GSD: 1				nm	
Mass	Upper $\mu g/cm^2$	Low	ver $\mu g/cm^2$		
1 Day	0.07268		0.00136		
12 Day	0.109848	(0.015757		

Park et al (2015). Indoor Air 25(6): 631-640.

Ongoing development of an Inhalation Framework

Case study: PHMG causes a mild inflammatory response in MucilAir™ cell model

- Out of 26 biomarkers, only 2 showed significant changes, across dose and time
- Other biomarkers that had borderline dose-response were not considered for the BER plots
- PHMG was not cytotoxic in this model up to the dose tested

PHMG causes cytotoxicity in EpiAlveoloar™ cell model

- Daily exposure of 0.2 µg/cm² leads to loss of tissue integrity (TEER) accompanied by increased release of proinflammatory cytokine markers and ECM accumulation.
- These results might reflect the *in vivo* situation in humans where PHMG leads to acute interstitial pneumonia which is characterised by diffuse alveolar damage (Kim et al (2016). Arch Toxicol 90(3): 617-632).

Hypothetical Case study: Calculation Bioactivity-exposure ratio (BER) for the hairspray exposure

Bioactivity- exposure ratio (BER)	Hairspray exposure
BER _{UA}	366
BER _{LA}	110

Benchmarking against existent known human exposures to PHMG associated with adverse effects in humans

Park et al (2015). Indoor Air **25**(6): 631-640.

Concluding remarks

- Evaluation of NGRA needs to be in the context of how to combine estimates of exposure and bioactivity to give <u>reproducible decisions on safety with</u> <u>transparent measurement of uncertainty</u>
- Large scale evaluation exercises & case studies can increase confidence in NAMs – for inhalation <u>identification of benchmark chemical-exposures</u> is urgently needed to allow us <u>to assess the robustness of NAMs and define a</u> <u>protective BER.</u>
- Through the process of this <u>evaluation we can identify gaps in our</u> <u>approaches</u> and design new testing strategies to address them

Acknowledgements

Unilever:

- Maria Baltazar
- Sophie Cable
- Anthony Bowden
- Alistair Middleton
- Joe Reynolds
- George Fitton
- Mathura Theiventhran
- Danilo Basili
- Mark Liddell
- Jade Houghton
- Tym Pietrenko
- Patrik Engi
- Ouarda Saib
- Hugh Barlow
- Ellen Edwards

Epithelix:

- Samuel Constant
- Bernadett Boda

Charles River Laboratories:

- Joanne Wallace
- Hazel Paulo
- **Clive Roper** (now Roper Toxicology consulting limited)

IIVS:

- Holger Behrsing
- Vivek Patel
- Adam Wahab
- Pooja Naik

Thank You for your attention!

Matthew.Dent@unilever.com

Maria.Baltazar@unilever.com Iris.Muller@unilever.com

https://seac.unilever.com

