# **Safety & Environmental Assurance Centre**



Clearance

in silico 98.57 L/h in vitro 929 L/h

0.02

0.0046

99th Percentile

0.022

0.005

## A Next Generation Risk Assessment Case Study for Coumarin in Hypothetical **Cosmetic Products**

Baltazar MT<sup>a\*</sup>, Cable S<sup>a</sup>, Carmichael PL<sup>a</sup>, Cubberley R<sup>a</sup>, Cull TA<sup>a</sup>, Delagrange M<sup>b</sup>, Dent MP<sup>a</sup>, Hatherell S<sup>a</sup>, Houghton J<sup>a</sup>, Kukic P<sup>a</sup>, Li H<sup>a</sup>, Lee M-Y<sup>c</sup>, Malcomber S<sup>a</sup>, Middleton AM<sup>a</sup>, Moxon TE<sup>a</sup>, Nathanail AV<sup>a</sup>, Nicol B<sup>a</sup>, Pendlington R<sup>a</sup>, Reynolds G<sup>a</sup>, Reynolds J<sup>a</sup>, White A<sup>a</sup>, Westmoreland C<sup>a</sup> <sup>a</sup> Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK; <sup>b</sup>Vrije Universiteit Brussel, Boulevard de la Plaine2, 1050 Ixelles, Belgium; <sup>c</sup>Astrazeneca, Cambridge

### **1. Introduction**

Next Generation Risk Assessment (NGRA) is an exposure-led, hypothesis-driven risk assessment approach that integrates New Approach Methodologies (NAMs) to assure safety without the use of animal testing. Over recent years several theoretical frameworks depicting a tiered and iterative approach to conducting a NGRA have been published [Berggren et al, 2017; Dent et al, 2018], although there is a lack of examples of implementation of these frameworks.

In this study we conducted a hypothetical safety assessment of 0.1% coumarin in a face cream and body lotion using only NAMs to inform a safety decision, focusing on the potential for systemic toxicity



#### Figure 1. Example framework implemented for the hypothetical risk assessment of coumarin in face cream and body lotion using NAMs.

### 2. Exposure Estimation



Protein binding



the  $C_{max}$  predictions and PoD has been plotted.

Dent et al. Computational Toxicology 7 (2018): 20-26.[2] Hatherell et al. Toxicological Sciences 176.1 (2020): 11-33. Berggren et al., 2017, Computational Toxicology 4:31-44. Farmahin et al. Archives of Toxicology 91 (2017): 2045-2065