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Physiological Based Kinetics (PBK) modelling
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- ADME properties of a chemical can be used to predict its concentration time course in different organs/tissues in the  
human body after exposure to the chemical via different exposure routes, e.g., oral, skin and inhalation. The outcome 
of PBK modelling, e.g., the maximum concentration of the chemical in an organ (Cmax), can be compared with Point of 
Departure from in vitro bioactivity assays to support NGRA decision
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Clearance rate – what it is and why it is important

Clearance: The volume of plasma from which a substance is 
completely removed per unit time (ml/min, L/h)

Blood flow through the liver, reflecting drug delivery to the liver

Fraction of drug in the blood that is not bound to plasma proteins

Intrinsic clearance (Clint): Intrinsic ability of hepatic enzymes to metabolize the drug

One of the most sensitive parameters to Cmax (Moxon, 2020; Punt, 2022; van Tongeren, 2022)

Hepatic Clearance Renal Clearance

Understanding the uncertainty of Clint estimation is critical to 
characterisation of the uncertainty of Cmax predictions
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Support a transparent exposure assessment in NGRA

Influenced by

This work aims to characterise the uncertainty for Clint from the in vitro and/or in vivo clinical 
measurements so that its impact on the uncertainty on Cmax could be analysed to support a 
transparent exposure assessment in NGRA



Data collation

Pearce, et al., 2017 Halifax, et al., 2010 Lombardo, et al., 2018

In vivo total clearance
1352 chemicals in total

In vivo and in vitro hepatic clearance
110 chemicals in total

In vitro hepatic clearance
1158 chemicals in total

137 chemicals in total with both in vitro and in vivo hepatic/total clearance data

115 chemicals in total left for data analysis

According to Extended Clearance Classification System (ECCS) (Varma et 
al., 2015), from the 137 chemicals, ADMET Predictor® is used to “select” 
chemicals predominantly cleared by liver, so that the total clearance is 
considered the same as hepatic clearance for the “selected” chemicals

Aim: find chemicals with both in vitro and in vivo  clinical clearance measurement data, so that 
the relationship between the measurements and Clint including the uncertainty associated can 
be analysed.



Data insight
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Chemicals with only 1 in
vivo measurement avalable

Chemicals with 2 in vivo
measurements available
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Chemicals with only 1 in vitro
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measurements available

Chemicals with 3 in vitro
measurements available

Chemicals with 4 in vitro
measurements available

For the same chemical, in vitro measurements are in general is less consistent compared to in vivo 
measurements (thus create more uncertainty)



𝐶𝑙𝑖𝑣𝑣_𝑖𝑛𝑡
𝑖 : the in vivo intrinsic clearance rate

Bayesian model (1) – Structure
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𝐶𝑙𝑖𝑣𝑡_𝑚
𝑖,𝑘 : the 𝑘𝑡ℎ measurement of hepatocyte based in vitro clearance rate for chemical 𝑖

𝐶𝑙𝑖𝑣𝑡_𝑚_𝑎𝑣𝑒
𝑖 : the average measured value of hepatocyte based in vitro clearance rate for chemical 𝑖

𝐶𝑙𝑖𝑣𝑡_𝑠
𝑖 : the scaled in vitro clearance rate for chemical 𝑖, considering the fraction unbound of chemical 𝑖 (𝑓𝑢𝑖), 

hepatocellularity (SF) and human liver weight (HLW)

𝐶𝑙𝑖𝑣𝑣_𝑡
𝑖 : the total in vivo hepatic clearance rate, relation between 𝐶𝑙𝑖𝑣𝑣_𝑡

𝑖  and 𝐶𝑙𝑖𝑣𝑣_𝑖𝑛𝑡
𝑖  is determined by liver models 

accounting for the impact of blood flow through liver and the fraction of chemicals that are unbound to plasma protein

𝐶𝑙𝑖𝑣𝑣_𝑚
𝑖,𝑗

: the 𝑗𝑡ℎ measurement in vivo clearance rate for chemical 𝑖



Bayesian model (2) - Equations
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(6): Capture uncertainty in measurement of Clivv_m

(2)

(3)

(1)

(1): Capture uncertainty in estimation of Clivv_int across all chemicals in the dataset

(2): Assume linear relation between Clivt_s and Clivv_int (Halifax, 2010) with uncertainty

(3): In vitro clearance scaling (Halifax, 2010), considering 
• The fraction unbound of chemical (𝑓𝑢𝑖nc), a regression function based on 𝑙𝑜𝑔𝑃 or 𝑙𝑜𝑔𝐷 
• Hepatocellularity (SF, 120 million/g liver) 
• Human liver weight (HLW, 21.4 g liver/kg body weight)

(4): Capture uncertainty in measurement of Clivt_m

(5): Well Stirred liver model (Halifax, 2010) capturing the impact of 
• Blood flow through liver (𝑄𝐻, 20.7 ml/min/kg for an average adult)
• The fraction of chemicals that are unbound to plasma protein (𝑓𝑢)



Bayesian model (3) – Bayesian Idea in clearance data analysis

Collection of unknown parameters

Data

Data

Chemical specific constants

Unknown parameters

Physiological related constants



Bayesian model (4) – Prior 

𝜎𝑖𝑣𝑡_𝑖𝑛𝑡~𝑛𝑜𝑟𝑚𝑎𝑙 0,1 , 𝜎𝑖𝑣𝑡_𝑖𝑛𝑡 > 0

𝜎𝑖𝑣𝑖𝑣𝑒~𝑛𝑜𝑟𝑚𝑎𝑙 0,1 , 𝜎𝑖𝑣𝑖𝑣𝑒 > 0

𝜎𝑖𝑣𝑡_𝑚~𝑛𝑜𝑟𝑚𝑎𝑙 0,1 , 𝜎𝑖𝑣𝑡_𝑚 > 0

𝜎𝑖𝑣𝑣_𝑚~𝑛𝑜𝑟𝑚𝑎𝑙 0,1  , 𝜎𝑖𝑣v_𝑚 > 0

𝜇𝑖𝑣𝑣_𝑖𝑛𝑡~𝑁 1.73,0.9

𝑎~𝑁 0,1

𝑏~𝑁 0,1

(1) (2)

(3) (4)

(6)(5)

Non negative, non informative prior

Non informative prior

Data informed prior



Result - parameter posterior VS prior
The Bayesian model is built using R 4.3.0 and rstan 2.21.8.

After running the model using all in vitro and in vivo measured clearance data, the posterior 
distribution of the parameters are plotted against their prior distributions, as below:

Prior Mean = 1.73, SD = 0.9

Posterior Mean = 1.64, SD =0.09

Prior Mean = 0, SD = 1

Posterior Mean = 0.46, SD =0.05

Prior Mean = 0, SD = 1

Posterior Mean = 0.30, SD =0.08

P r i o r :  h a l f  n o r m a l  d i s t r i b u t i o n  ( n o n - n e g a t i v e )  h a l f   w i t h  m e a n  =  0  a n d  s t a n d a r d  d e v i a t i o n   =  1 

Posterior Mean = 0.89, SD =0.06Posterior Mean = 0.23, SD =0.06Posterior Mean = 0.38, SD =0.03 Posterior Mean = 0.14, SD =0.01
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Result - parameter posterior VS prior – model implication

Posterior Mean = 0.38, SD =0.03 Posterior Mean = 0.14, SD =0.01

Posterior Mean = 0.89, SD =0.06Posterior Mean = 0.23, SD =0.06

(6): Capture uncertainty in measurement of Clivv_m

(1): Capture uncertainty in estimation of Clivv_int across all chemicals in the dataset

(2): Assume linear relation between Clivt_s and Clivv_int (Halifax, 2010) with uncertainty

(3): In vitro clearance scaling (Halifax, 2010), deterministic

(4): Capture uncertainty in measurement of Clivt_m

(5): Well Stirred liver model (Halifax, 2010), deterministic

Relation based on posterior distribution and dataset collated

Deterministic relation in (Halifax, 2010) based on its data

• From posterior mean of  𝜎𝑖𝑣𝑡_𝑚 in (4) and 𝜎𝑖𝑣v_𝑚 in (6), it can be seen the posterior uncertainty of in vitro 

measurement is higher than that of in vivo measurement – consistent with the data collated

• The uncertainty of Clivv_int (reflected by posterior mean of 𝜎𝑖𝑣𝑡_𝑖𝑛𝑡 in (1)) is larger than that of Clivt_m as the 

uncertainty of Clivt_m  is enlarged by the deterministic relation in (5)

• The relation between in vitro clearance and in vivo clearance in (2) based on posterior parameter 
distribution is in general agree with the same relation specified deterministically in (Halifax, 2010)



Result– predicted VS raw data for in vivo intrinsic clearance

The figure on the left is a comparison between 
model prediction on Clivv_int based on the 
posterior distributions of the parameters and 
the raw data in the literature for 115 chemicals 

From the figure, it can be seen that
• Almost all raw data lies in 2.5 to 97.5 

percentile range of the prediction except a 
few chemicals, e.g., Naproxen, Lidocaine, 
Propafenone and Bepridil

• This could be explained by the big difference 
between the value in the raw data from 
different literature, e.g., the value of Clivv_int for 
the above 4 chemicals are (unit: ml/min/kg):

Based on the measured clearance (either in 
vitro or in vivo or both), the model can predict 
the Clivv_int for each chemical and characterise 
the uncertainty associated with the prediction

Mean of prediction
2.5th to 97.5th percentile range of prediction
Raw data



Result– predicted VS raw data for different clearance
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Using the posterior distribution of the parameters derived from the Bayesian model, the uncertainty in the measurement of 
both in vitro and in vivo clearance for each chemical can also be inferred. 

In general, the uncertainty of prediction of Clivt_m_ave is the largest while the uncertainty of prediction of Clivv_t is the smallest, 
this is consistent with the uncertainty associated in the raw data

(In all 3 figures, the x-axis is spanning across 6 order of magnitude, so that the uncertainty in prediction and in raw data can 
be visually compared)



Summary

• Based on the measurements of in vitro and in vivo clinical clearance rate for 115 
chemicals, a Bayesian model was built to 
• Understand the relationship between different clearance rates
• Estimate the in vivo intrinsic clearance rate, one of the most sensitive parameters of a 

PBK model, with corresponding uncertainty being characterised, 

• Understanding uncertainty of in vivo intrinsic clearance rate can help us to have more 
understanding of the source and extend of uncertainty in PBK outcome, contributing to a 
transparent exposure assessment for NGRA

• The model can also be used to estimate the uncertainty in the in vitro and in vivo 
measurement of the clearance rate.  

• When there is a new (predominantly liver cleared) chemical with either in vitro or in vivo 
clinical measurements of clearance rate or both, this model can be used to estimate the 
corresponding in vivo intrinsic clearance rate, and the corresponding uncertainty.

• The extent of uncertainty of estimation is based on the extent of uncertainty in the 
corresponding measurement data. 
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