Safety Assessment without Animal Testing: Progress in Industry

Matt Dent Safety & Environmental Assurance Centre, Unilever

Safety Assessment without Animal Testing

- Background
- The Past
- The Present
- The Future

Ensuring Safe Ingredients for Foods, Drinks and Cosmetic Products

Risk Based Approach: Considers both the hazard and the exposure to evaluate the risk

Can we safely use x % of ingredient in product or x t per annum?

For consumers; workers; the environment

Toxicology has been undergoing a revolution

All Consumers Want Safe Products But Many Want Them Not to be Tested on Animals + Transparency

Use of Existing OECD In Vitro Approaches

Skin and eye irritation; skin sensitization; phototoxicity; mutagenicity

What About Systemic Toxicity?

e.g. 90 Day Repeat Dose Study

A new non-animal paradigm is needed... ...but replacement of animal test data is not the answer

2007 Toxicity Testing in the 21st Century (TT21C)

TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND STRATEGY

"Advances in toxicogenomics, bioinformatics, systems biology, and computational toxicology could transform toxicity testing from a system based on whole-animal testing to one founded primarily on in vitro methods that evaluate changes in biologic processes using cells, cell lines, or cellular components, preferably of human origin."

Perturbation of 'toxicity pathways' and stress responses

Principles of NGRA from ICCR

Main overriding principles:

- The overall goal is a human safety risk assessment
- » The assessment is exposure led
- » The assessment is hypothesis driven
- » The assessment is designed to prevent harm

SPrinciples describe how a NGRA should be conducted:

- >> Following an appropriate appraisal of existing information
- » Using a tiered and iterative approach
- » Using robust and relevant methods and strategies

Principles for documenting NGRA:

- » Sources of uncertainty should be characterized and documented
- » The logic of the approach should be transparently and documented

Dent et al ., (2018) Comp Tox 7:20-26

PBK (Physiologically Based Kinetic) Modelling

One Interpretation of TT21C: Quantitative in vitro to in vivo extrapolation

Another Interpretation: Tox21/ToxCast ~700 HTS Biological Pathways Assays

National Institute of Environmental Health Sciences (NIEHS) / National Toxicology Program (NTP)

National Center for Advancing Translational Sciences (NCATS)

U.S. Food and Drug Administration (FDA)

National Center for Computational Toxicology (EPA)

In Vitro Bioactivity vs Bioavailability

binding

Slide from Dr Rusty Thomas, EPA, with thanks

Rotroff, et al. Tox.Sci 2010

Katie Paul-Friedman et al. 2019 Tox Sci 173(1): 202-225

414/448 chemicals = 92% of the time this naïve approach appears conservative

• reduce its requests for, and funding of, mammal studies by 30 percent by 2025, and

· eliminate all mammal study requests and funding by 2035.

The Margin of Safety Approach

Case Study Approach... Imagine we have no data for: <u>Coumarin</u>

Safety assessment required for 0.1% coumarin in Body Lotion

Safety assessment required for 0.1% coumarin in Face Cream

FACE CREAM

With Coumarin

Baltazar et al., (2020) Tox Sci (in press) https://doi.org/10.1093/toxsci/kfaa048

Ab Initio NGRA Framework

Baltazar et al., (2020) Tox Sci (in press) https://doi.org/10.1093/toxsci/kfaa048

Collection of Existing Data and ADME Parameters

Coumarin
91-64-5
146.14 g/mol
1.39
0.96 mg/mL in phosphate buffer
Class 2 (Metabolism)
0.7
0.31
929 L/h

Chemistry determinations: Partition coefficient logP Peptide binding potential In vitro determined: **Kinetic solubility** Thermodynamic solubility Metabolic & chemical stability Stability in human plasma Plasma protein binding Partitioning in blood Skin penetration parameters

Systemic Bioavailability using PBK Modelling

Key output parameters from uncertainty analysis:

Parameter	Face cream (applied 2x/day)	Body lotion (applied 2x/day)
Plasma Cmax total (µM)	0.023	0.10
95th percentile Cmax (µM)	0.032	0.14

0.1% Face cream & body lotion in Europe

Physiologically-based kinetic modelling using GastroPlus® v9.5. Estimations based on experimental data (Clint, fup, bpr, solubility, LogP). Skin penetration parameters were fitted against skin penetration data.

Ab Initio NGRA Framework

In Vitro Bioactivity: Safety Screen

Cerep

A2A(h) (agonist radioligand) All binding and enzymatic assay Bowes et al 2012. Nature Reviews: Drug Discovery 11 909-922 α1A(h) (antagonist radioligand results were negative at 10 uM α2A(h) (antagonist radioligand G1(h) (agonist radioligand ITEM # ITEM # B2(h) (antagonist radioligand GPCR NOREPINEPHRINE norepinephrine 0355 transporter ADENOSINE • 0004 BZD (central) (agonist radioligand A₂₄ ADRENERGIO 2338 SEROTONIN 5-HT transporter 0439 alpha,, No receptor/target-led CB1(h) (agonist radioligand) 0013 alpha CB2(h) (agonist radioligand • 0018 ION CHANNELS beta. pharmacological effect CCK1 (CCKA) (h) (agonist radioligand) beta, 0020 GABA CHANNELS BZD (central 0028 • CANNABINOID CB, • 0036 GLUTAMATE CHANNELS NMDA 0066 D1(h) (antagonist radioligand CB. 0037 NICOTINIC CHANNELS 3029 • N neuronal 0482 ٠ D2S(h) (agonist radioligand) CHOLECYSTOKININ CCK, (CCK,) • 0039 SEROTONIN CHANNELS 5-HT, 0411 ETA(h) (agonist radioligand) DOPAMINE 0044 Ca2+ CHANNELS Ca³⁺ channel 0161 (L, dihydropyridine site) • 1322 NMDA (antagonist radioligand) ENDOTHELIN ET, • 0054 K* CHANNELS hERG (membrane 1868 H1(h) (antagonist radioligand preparation) HISTAMINE 0870 H2(h) (antagonist radioligand) 1208 K, channel 0166 MUSCARINI Na* CHANNELS Na+ channel (site 2) MAO-A (antagonist radioligand) 0091 0169 0093 M1(h) (antagonist radioligand) 0095 NUCLEAR RECEPTORS M2 (h) (antagonist radioligand STEROID NUCLEAR OPIOID & OPIOID-LIKE delta, (DOP) 0114 AR 0933 • ٠ RECEPTORS GR M3(h) (antagonist radioligand) kappa (KOP) ٠ 1971 • 0469 Nuclear mu (MOP) • 0118 N neuronal #482 (h) (agonist radioligand) SEROTONIN 5-HT. KINASES • 0131 GPCR panel receptor ő (DOP) (h) (agonist radioligand) 5-HT, 0132 CTK Lck kinase 2906 к (KOP) (agonist radioligand) 5-HT,, • 0471 panel 5-HT₂₈ • 1333 OTHER NON-KINASE ENZYMES μ (MOP) (h) (agonist radioligand) VASOPRESSIN 0159 AA METABOUSM 0726 ٧.. • COX, 5-HT1A(h) (agonist radioligand COX. 0727 5-HT1B (antagonist radioligand) MONOAMINE & 0363 TRANSPORTERS acetylcholinesteras NEUROTRANSMITTER 5-HT2A(h) (agonist radioligand MAO-A 0443 DOPAMINE 0052 dopamine Ion Channel 2432 Transporter transporte PHOSPHODIESTERASES PDE₃A 5-HT2B(h) (agonist radioligand) PDE4D2 2434 5-HT3(h) (antagonist radioligand) pane panel GR (h) (agonist radioligand) ■ HaCaT ■ HEK 293 ■ HeLa ■ HEL ■ Hep G2 ■ MCF2 Gene Expression Level across 5 cell lines AR (h) (agonist radioligand V1a(h) (agonist radioligand Ca2+ channel (L. dihydropyridine site) (antagonist radioligand) Potassium Channel hERG (human)- [3H] Dofetilide Enzyme panel KV channel (antagonist radioligand activation -Na+ channel (site 2) (antagonist radioligand) norepinephrine transporter(h) (antagonist radioligand) GPCRs Ion channels Enzymes Trans Nuclear receptors dopamine transporter(h) (antagonist radioligand) SafetyScreen44[™] Panel 5-HT transporter (h) (antagonist radioligand Test Concentration: 1.0E-05 M

% Inhibition of Control Specific Binding

Immunomodulatory Bioactivity: BioMap® Diversity 8 Panel

BioMAP systems contain human primary cell types (or combinations) that are stimulated to replicate complex cell and pathway interactions of vascular inflammation, immune activation and tissue remodelling

In Vitro Bioactivity: Cell Stress Panel Hatherall et al., 2020 Tox Sci (Accepted)

~40 Biomarkers; 3 Timepoints; 8 Concentrations; ~10 Stress Pathways

*now conducted in HepaRG spheroids

In Vitro Bioactivity: Cell Stress Panel

Biomarker	Stress pathway	PoD (2.5 th percentile), µM	PoD (50 th percentile), µM	PoD (97.5 th percentile), µM	Effect
Cell count (72h)	Cell health	54	150	316	down
ATP (6h) ATP (24h)	Cell health	411 194	738 449	976 763	down
GSH (24h)	Oxidative stress	641	781	979	up
IL-8 (6h) IL-8 (24H)	Inflammation	8.8 343	52 698	123 974	down
Phosholipidosis (24h) Phosholipidosis (72h)	Cell health	289	605	949	down
-		285	588	915	
LDH (1h)	Cell health	52	370	974	up
ICAM-1 (24h)	Inflammation	354	696	973	down
Steatosis	Cell health	59	659	974	up

Summary with PoD for cell stress biomarkers:

- Coumarin not very active in comparison to known 'high risk compounds' like doxorubicin, diclofenac etc.
- Cell count, cellular ATP, GSH, IL-8, Phospholipids, LDH, ICAM-1 and steatosis showed a dose response

In Vitro Bioactivity: Tempo-Seq Technology Bio Spyder

High-Throughput Transcriptomics Gene Expression Profiling (HTTr)

- 1. Defining a safe operating exposure for systemic toxicity using a **NOTEL** (No Transcriptional Effect Level)
- 2. Defining compound similarity grouping (Read Across)

NOTEL is the derived concentration of a compound that does not elicit a meaningful change in gene expression (i.e. the threshold of the concentration that elicits minimal mechanistic activity)

Cell lines (chosen to express a range of relevant receptors)

- MCF-7 human breast adenocarcinoma cell line
- HepG2 human liver carcinoma

HepaRG – terminally differentiated hepatic cells that retain many

- characteristics of primary human hepatocytes + as spheroids
- N-HEK primary normal human epidermal keratinocytes

In Vitro Bioactivity: Tempo-Seq Technology

- Coumarin dose range 0.001uM to 100uM
- 24 hour time point
- QC and normalisation in DESeq2
- BMDExpress2 applied to determine NOTEL (3 pathway approaches)

Bio Spyder[®]

Margin of Safety considering PODs and Exposure

PoDs and plasma C_{max} (µM) are expressed as total concentration

C_{max} expressed as a distribution:

- Line = median (50th percentile)
- Inner band = 25th-75th percentile
- Outer band = 2.5th-97.5th percentile (95th credible interval)

Application of Ab Initio Approach: Risk Assessment (NGRA)

Margin of safety is the fold difference between the Cmax and the in vitro POD

Technology	Cell line/ Enzyme/Biomarker	Face cream Min. 5th percentile MoS	Body Lotion Min. 5th percentile MoS
Cell stress panel	HepG2 (ATP, 24h)	96738	22048
Cell stress panel	NHEK (OCR 1h)	1330	295
HTTr	HepG2 (24h)	7223	1618
HTTr	HepaRG (24h)	8864	1986
Toxcast	MAO B	3711	831
PubChem	Carbonic Anhydrase Type I	706	158
PubChem	Carbonic Anhydrase Type II	2140	479
PubChem	Carbonic Anhydrase Type VI	14652	3282
Cell stress panel	HepaRG_3D (cell mem perm 168h)	9601	2197
HTTr	HepaRG_3D_24h	9538	2137

Ab Initio NGRA Framework

Sensitivity: Confidential

Making sense of margins of safety by benchmarking

200

Relative induction (%)

Dent et al., (2019) Tox Sci 167(2): 375-384

+ Bioactivity data (substance and comparators)

10-8

Concentration (Log M)

10-6

10-4

Substance (DHT EC50)

Substance (DHT 100xEC50)

0.35 0.3 0.2 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 Day

EAR (unitless) =

Exposure

Exposure (plasma exposure in µM)

Flutamide (DHT EC50)

Flutamide (DHT 100xEC50)

Activity (IC₅₀ μM)

EAR (test substance)

DCR =

(After Becker et al., (2015) Regul Toxicol Pharmacol 71(3): 398–408)

EAR (dietary comparator)

Substance

Higher tier tools to differentiate between activity and adversity

BROWN

Dent et al., (2019) TIV 60: 203-211

Cell cultures with more *in vivo* relevance + morphological and molecular biomarkers

ESR2

Building confidence in NGRA

- Need to ensure quality/robustness of the non-standard (non-TG) work and to characterise uncertainty to allow informed decision-making
 - Cell types, study designs, decision points
- This is a seismic shift in approach dialogue is needed
- More research, creativity and examples needed to build confidence

Common frameworks

- Wealth of available, but unexploited data
- Opportunity for knowledge sharing across (eco)toxicology

	Toxicology in Vitro 62 (2020) 104692	
	Contents lists available at ScienceDirect	Toxicology in Vitro
	Toxicology in Vitro	Tiv
ELSEVIER	journal homepage: www.elsevier.com/locate/toxinvit	

Vision of a near future: Bridging the human health–environment divide. Toward an integrated strategy to understand mechanisms across species for chemical safety assessment

Conclusions

- Consumers are demanding change
- This has spurred progress in the development of next generation risk assessments in the consumer products industry
- NGRA is exposure-led, hypothesis driven, and requires clear articulation of the risk assessment question
- Progress is only possible with a change in mindset (protection not prediction)
- Shortcomings will be addressed by current and future research and more case studies
- Principles apply equally to environmental safety assessment

Acknowledgements

Maria Baltazar Sophie Cable Paul Carmichael **Richard Cubberley** Tom Cull Mona Delagrange Julia Fentem Sarah Hatherell Jade Houghton Predrag Kukic Juliette Pickles **Mi-Young Lee** Hequn Li Sophie Malcomber Tom Moxon Alexis Nathanail Beate Nicol **Ruth Pendlington** Sam Piechota Fiona Reynolds Georgia Reynolds Joe Reynolds Paul Russell Nikol Simecek Andy Scott Ian Sorrell **Carl Westmoreland** Andy White

