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'y 3 The top ten scoring proteins within the highest scoring MCODE cluster (i.e., the most
interconnected proteins within the network according to the MCODE algorithm) that
were also directly connected to the molecular target in the network were used for further
R-HSA- analysis. Filtering the proteins in this way helps balance the analysis efficiency with the
prediction confidence.

3 Methods:

A SegAPASSusesproteinsequencénformationto evaluatechemicaltargetconservation
acrossspecieso supportpredictionsof speciesusceptibilityto chemicalexposuré

A G2P-SCAN usesbiological pathway,geneorthology andproteinfamily informationto
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3 Diagram showing the approach of combining the use of SegAPASS an8GARIR tools to support cross SegAPASS
species predictions of chemical susceptibilityughinferences of pathway conservation. evaluations.
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domain of concentratiordependent manner.
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3 Summary of SegAPASS information used in Levél3 evaluations for the three case
example targets.

Overlaps with AOPs

Genes to Pathway$ Species

3 Atoxicological context for the mapped Reactome pathways could be derived by comparing them
with AOPs that also involve the target.
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3 (A) Bar plot of gene counts from all Reactome pathways that were mapped using either
ESR1PPARA or GABRAlas a G2FSCAN input. B8) Bar plot of the pathway coverage _ _ _ _ N
I : PR I : percentage for each mapped Reactome pathway. 3 (A) The Venn diagram illustrates the overlap in gene identities betw@Pr(58): NR1I3 (CAR)
proteins families entities reactions 5 Summary of pathway count suppression leading to hepatic steatosis and three mapped pathways using PPARA as the query.
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H. sapiens Reactome pathway B 3 Functional overlaps can be
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assessed by comparing the
biological outcomes of
mapped pathways and
AOP KEs or KERs.
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M. musculus data in addition to gene
orthologyand protein
family identities supports
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Estrogerdependent gene expression
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molecular complex of the mapped pathway,
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which gave support that a chemical interaction at
this target would likely affect this pathway.

Greater similaritydy, Greater likelihood that pathway is conserved in the species
Line of Evidence:Predict Potential Conservation of Pathway Across Species

Summary & Conclusions

3 In combinationjt wasdemonstratethroughthe useof threecaseexampleghatthesetoolscanbe usedto:
A Expandthe predictionof biological pathwayconservatioracrossall speciewith relevantproteindata(severakdditionallinesof evidencearegeneratedhroughthe useof G2P-SCAN with respecto the 6 modelorganisms)
A Aid in the predictionof crossspecieshemicalsusceptibility
A Potentiallyextendthe biologically plausibletDOA of relevantAOPs
A Provideadditionalbiologicalinformationto helpfurthercharacterizeertainkKEs andKERS
3 Thethreecaseexamplesisedherehelpedidentify areador improvemenfor this approach
A Additionalfactorssuchaslife stagelife history,biologicalsex,andtoxicokineticfactorslike absorptiongistribution,metabolismexcretion(ADME) may beincorporatedo yield a morecompleteunderstandingf the chemicalexposureandresultingbiological
Impacts
A Incorporationof quantitativepathwayinformationthroughthe useof (high-throughput)ranscriptomic®r proteomicsvould allow for pathwaytopologyevaluationgor moleculartargetandpathwayprioritizations
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