Charles Gong¹ , Jonathan M. Goodman¹ , and Katarzyna R. Przybylak²

1. Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW 2. Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK MK44 1LQ

OBJECTIVES

- AOP provides a model for mechanistic understanding of toxicity
- Most in silico models for mitochondrial toxicity lack this
- Availability of new data allows identification of structural alerts directly linked to mechanism of action

MAIN RESULTS

- 11 structural alerts with literature evidence for mechanism of action (8 of these are novel)
- Including these alerts improves the performance of existing alerts published by Nelms et al., 2015

APPROACH

Abstract #254

- Data source: Seahorse respirometric assay
- Structural alerts: KNIME workflow based on iterative Bayes statistics
- Verify mechanism: Literature search

IMPACT

- Progress toward a more complete AOP for mitochondrial toxicity
- Current coverage of mechanistic space is limited
- **For more information, contact: Charles Gong (cg588@cam.ac.uk)**

OBJECTIVES

Macro-Molecular Cellular Organ Organism Population Toxicant Interactions Responses Responses Responses Responses Gene Activation Altered Lethality Receptor/Ligand Physiology Interaction Protein Impaired Structure Production **Disrupted** Development Chemical **DNA Binding** Homeostasis Recruitment **Properties** Altered Impaired Reproduction Protein Signalling **Altered Tissue** Extinction Development Oxidation Protein or Function Cancer Depletion Anchor 2 (adverse outcomes at the organism- or population-level) **Toxicity Pathway** Anchor 1 (initiating event)

Adverse Outcome Pathway

- Molecular Initiating Event links chemical properties of molecules to biological responses
- Many current models do not incorporate mechanism of action, limiting our understanding
- New data allows linking structural alerts directly to mechanism of action

Diagram adapted from Allen et al., 2014

APPROACH

- Data source: Hallinger et al., 2020
- Seahorse respirometric assay

APPROACH

Diagram adapted from Wedlake et al., 2020

APPROACH

Group alerts by mechanism

Look for literature evidence for activity

Modify alert based on remaining compounds

Validation on external data (data source: Hemmerich et al., 2020)

(Nelms et al., 2015)

IMPACT

- Improve predictive power of existing models by accounting for more mechanisms of action
- Coverage of mechanistic space is limited for now, but AOP framework allows gradual build-up

REFERENCES

- Nelms, M. D., Mellor, C. L., Cronin, M. T. D., Madden, J. C. and Enoch, S. J., 2015. Development of an in Silico Profiler for Mitochondrial Toxicity. Chemical Research in Toxicology, 28(10), pp.1891-1902.
- Allen, T. E. H., Goodman, J. M., Gutsell, S. and Russell, P. J., 2014. Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment. *Chemical Research in Toxicology*, 27(12), pp.2100-2112.
- Hallinger, D., Lindsay, H., Paul Friedman, K., Suarez, D. and Simmons, S., 2020. Respirometric Screening and Characterization of Mitochondrial Toxicants Within the ToxCast Phase I and II Chemical Libraries. *Toxicological Sciences*, 176(1), pp.175-192.
- Wedlake, A. J., Folia, M., Piechota, S., Allen, T. E. H., Goodman, J. M., Gutsell, S. and Russell, P. J., 2020. Structural Alerts and Random Forest Models in a Consensus Approach for Receptor Binding Molecular Initiating Events. *Chemical Research in Toxicology*, 33(2), pp.388-401
- Hemmerich, J., Troger, F., Füzi, B. and Ecker, G. F., 2020. Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity. *Molecular Informatics*, 39(5), p.2000005.