Next generation risk assessment approaches for skin sensitisation:

A case study with coumarin

Maria Baltazar, SEAC Science Leader SEAC UNILEVER

Non-animal Safety Science -> Next Generation Risk Assessment

Unilever

Our NGRA approaches

Link to webinar:P2.01

Skin Sensitisation

Reynolds et al (2021) Reg Tox Pharmacol, **127**, 105075 Gilmour et al (2022) Regulatory Toxicology and Pharmacology **13**

DART

Unilever

Rajagopal et al (2022). Front. Toxicol., 07 March 2022

Systemic safety (widen.net)

Baltazar et al., (2020) Tox Sci, Volume 176, Issue 1, Pages 236-252

Inhalation

IVAMSS Webinar: Inhalation Toxicity: In Vitro to Human Risk Assessment https://www.toxicology.org/groups/ss/IVSS/Events.asp

Our NGRA approaches

Link to webinar:P2.01

Skin Sensitisation

Reynolds et al (2021) Reg Tox Pharmacol, **127**, 105075 Gilmour et al (2022) Regulatory Toxicology and Pharmacology **13**

DART

Unilever

Rajagopal et al (2022). Front. Toxicol., 07 March 2022

Systemic safety (wi

Baltazar et al., (2020) Tox Sci, Volume 176, Issue 1, Pages 236-252

Inhalation

IVAMSS Webinar: Inhalation Toxicity: In Vitro to Human Risk Assessment https://www.toxicology.org/groups/ss/IVSS/Events.asp

Skin allergy risk assessment evolution

Unilever

Success in skin allergy NGRA- Use of AOPs to develop NAMS

Unilever

SARA Model – a defined approach to provide potency and risk information based upon New Approach Methodologies (NAMs)

- SARA model is a Bayesian statistical approach which can make potency and risk predictions using any combination of historical *in vivo* (LLNA, HRIPT) or NAM (DPRA, KeratinoSensTM, h-CLAT and U-SENSTM) – <u>curated database of 81 chemicals</u>
- Skin sensitiser potency is expressed as the ED₀₁, the dose estimated to induce sensitisation in 1% of a HRIPT population. This is the Point of departure for the risk assessment.
- SARA model also makes use of benchmark exposures to infer a probability that a consumer exposure to a chemical is 'low risk'

THE BASIC PRINCIPLES OF THE SARA MODEL

Unilever

Potency across the SARA database - PoDs

This graph gives the ED₀₁ and quantified uncertainty (the dot with the 50% and 95% confidence intervals denoted by the thick and thin lines either side)

Use of consumer exposure information and clinical evidence to develop skin allergy risk benchmarks

62 low or high risk benchmark exposures using 10 human skin allergens (e.g. MCI/MI) with an established history of use in 7 cosmetic product types.

Example

Matorial	Droduct type	Use level (ppm)	Consumer exposure to	Induction
Material	Product type		benchmark product (ng cm-2)	risk
MCI/MI	Dee	30	350	HIGH
,	Deo	7.5	87.8	HIGH
	Eaco croam	30	100	HIGH
	Face cream	7.5	25	HIGH
	Padulation	30	18	HIGH
	Body totion	7.5	4	HIGH
	Liquid hand soap	15	7.3	LOW
	Shampoo	15	1.1	LOW
	Shower gel	15	0.2	LOW

Margin of exposure calculation (PoD/Exposure)

A case study approach – human health safety assessment required for...

0.1% COUMARIN IN FACE CREAM AND 1% IN ROLL-ON DEODORANT (NEW FRAGRANCE)

 For the purposes of the case study, in vivo data and read-across were not used, and the use of dermal sensitisation threshold (DST) was not appropriate.

Application of NGRA framework for Skin Allergy

This NGRA framework is applied to a hypothetical skin allergy assessment of a consumer product at two exposures - 0.1% coumarin in a face cream and 1% in a non-spray deodorant.

Local Exposure

Collate Existing Information/ Problem Formulation

Product type	Face cream	Deodorant
Product used per day (90 th percentile) (g/day)	1.54	1.5
Ingredient inclusion level (%)	0.1	1
Skin surface area (face / axilla) (cm²)	565	200
Leave-on or Rinse-off	Leave-on	Leave-on
Local dermal exposure (µg/cm²)	2.7	75

Existing Information – In silico predictions

Chemicals	ToxTree	OECD Toolbox*	TIMES-SS	Derek Nexus	
	Protein binding				
Coumarin	MA and AC	MA and AC	Non-Sensitiser	Weak sensitiser	
	Meta	bolites			
Hydroxycoumarins (5-OH, 6- OH, 7-OH, 8-OH)	5-OH: MA and AC	5-OH: AC and MA	5-OH: NS	5-OH: Strong	
	6-OH: MA and AC	6-OH: AC and	6-OH: NS	6-OH: Strong	
	<mark>7-OH: MA and AC</mark> 8-OH: MA and AC	MA	7-OH: NS	<mark>7-OH: Strong</mark>	
		<mark>7-OH: AC and</mark> MA	8-OH: NS	8-OH: Strong	
		8-OH: AC and MA			
o- Hydroxyphenylacetaldehyd e	Schiff base, MA and SN2	Schiff base	Strong sensitiser	Moderate sensitiser	
o-Hydroxyphenylacetic acid	MA and SN2	No alerts	NS	Moderate sensitiser	
(3R,4R)-3,4-Dihydroxy-2- chromanone; (Coumarin 3,4 epoxide as precursor)	MA, AC and SN2	AC, SN2	Strong sensitiser	Moderate sensitiser	

MA: Michael acceptor; AC: acyl transfer; NS: non-sensitiser

Problem Formulation

Hypothesis: Coumarin has the potential to be a sensitiser and can act as either a hapten or pro-hapten.

Generate DPRA, KeratinoSens™, h-CLAT, U-SENS™ and peptide reactivity profiling data for coumarin to evaluate its skin sensitisation potential, potency, and a risk prediction for the given exposure scenarios.

To address areas of uncertainty regarding pro-haptens:

- 1. Replicate the testing strategy for coumarin for the major metabolite, 7-OH coumarin
- 2. Ex vivo skin cultures were used to determine if the 7-OH coumarin formation pathway was relevant/significant in human skin
- 3. Reactive metabolites were investigated through an experiment designed to trap reactive chemicals with GSH

Results from NAM Data Generation for coumarin

• **Coumarin was positive in all tests, except for DPRA** where peptide depletion was too low to meet positive threshold. No adducts were observed in the peptide profiling assay.

Results from NAM Data Generation for 7-OH coumarin and metabolism data

	DPRA (TG442C)		KeratinoSens™ (TG 442D)	h-CLAT (TG 442E)		U-SENS™ (TG 442E)
	%cys depl.	%lys depl.	EC1.5 (µM)	CD86 (EC200 µg/mL)	CD54 (EC150 µg/mL)	CD86 (EC150 µg/mL)
7-OH Coumarin	0*	0	>2000	>566	>566	182

- 7-OH coumarin was negative in KeratinoSens[™] & h-CLAT, positive in USENS[™], inconclusive in DPRA.
- Ex vivo skin data show that the formation of **7-OH coumarin is not a major pathway in human skin**. The formation of reactive metabolites such as coumarin-3,4-epoxide could not be excluded nor confirmed in *ex vivo* skin.
- Risk assessment based on parent, coumarin, is more appropriate

Determine Point of Departure (PoD) using SARA Model for coumarin

- SARA Model to define a human relevant PoD (ED₀₁ i.e the 1% sensitising dose for a HRIPT population)
- For coumarin, with all NAM data, the expected SARA Model derived ED₀₁ is 11,000 µg/cm²,
- Coumarin ED_{01} 4200 μ g/cm² for NAM data excluding DPRA.

Risk assessment: Determine Margin of Exposure (MoE) and probability of risk

MCI/MI Deo 30ppm MDBGN Deo 1000ppm Propyl gallate Lipstick 1000ppm MCI/MI Face cream 30ppm MCI/MI Deo 8ppm MDBGN Face cream 1000ppm Propyl gallate Lipstick 500ppm Methylisothiazolinone Deo 100ppm Coumarin NAM w/o DPRA Deodorant 10000ppm HICC Deo 15000ppm MCI/MI Face cream 8ppm MCI/MI Body lotion 30ppm Coumarin NAM Deodorant 10000ppm MDBGN Body lotion 1000ppm Methylisothiazolinone Face cream 100ppm MDBGN Liquid hand soap 1000ppm MCI/MI Liquid hand soap 15ppm IPBC Deo 70ppm Propyl paraben Deo 4000ppm Phenoxyethanol Deo 10000ppm MCI/MI Body lotion 8ppm Benzyl alcohol Deo 10000ppm Methylisothiazolinone Body lotion 100ppm IPBC Face cream 100ppm Sodium benzoate Deo 5000ppm MDBGN Shampoo 1000ppm Propyl paraben Deo 1400ppm Coumarin NAM w/o DPRA Face cream 1000ppm MCI/MI Shampoo 15ppm Benzyl alcohol Face cream 14000ppm Propyl paraben Face cream 4000ppm Phenoxyethanol Face cream 10000ppm Benzyl alcohol Face cream 10000ppm Benzyl alcohol Liquid hand soap 50000ppm Benzyl alcohol Deo 2000ppm Coumarin NAM Face cream 1000ppm Sodium benzoate Face cream 5000ppm Sodium benzoate Liquid hand soap 25000ppm Propyl paraben Face cream 1400ppm PBC Liquid hand soap 100ppm MDBGN Shower gel 1000ppm Benzyl alcohol Body lotion 14000ppm Propyl paraben Body lotion 4000ppm Phenoxyethanol Body lotion 10000ppm MCI/MI Shower gel 15ppm Propyl paraben Liquid hand soap 4000ppm Phenoxyethanol Liquid hand soap 10000ppm Benzyl alcohol Body lotion 10000ppm Benzyl alcohol Liquid hand soap 10000ppm Benzyl alcohol Shampoo 50000ppm Sodium benzoate Body lotion 5000ppm Propyl paraben Body lotion 1400ppm Propyl paraben Liquid hand soap 1400ppm Sodium benzoate Shampoo 25000ppm IPBC Shampoo 100ppm Propyl paraben Shampoo 4000ppm Phenoxyethanol Shampoo 10000ppm Benzyl alcohol Shampoo 10000ppm Benzyl alcohol Shower gel 50000ppm Propyl paraben Shampoo 1400ppm Sodium benzoate Shower gel 25000ppm IPBC Shower gel 100ppm Propyl paraben Shower gel 4000ppm Phenoxyethanol Shower gel 10000ppm Benzyl alcohol Shower gel 10000ppm Propyl paraben Shower gel 1400ppm

- Margin exposure is calculated for both exposure scenarios
- A probability of low risk is calculated based on the benchmark data
- For the **face cream exposure Low Risk** outcome is most likely
- For the **deodorant exposure- High risk** outcome is most likely

NICEATM-Unilever CRADA

National Toxicology Program

U.S. Department of Health and Human Services

NICEATM News - 2021 Issue 25: May 27

In this Newsletter:

NICEATM to Collaborate with Unilever on Development of Predictive Model for Skin Sensitization

NICEATM to Collaborate with Unilever on Development of Predictive Model for Skin Sensitization

NICEATM has entered into an agreement with consumer products company Unilever to collaboratively test and further develop their Skin Allergy Risk Assessment (SARA) predictive model. SARA is a computational model that uses a variety of input data to estimate a probability that a chemical will cause an allergic skin reaction in humans. NICEATM will test the SARA model using a variety of chemical data sets, including chemicals of interest to U.S. and international regulatory agencies. NICEATM and Unilever will also work together to expand the SARA model to include data generated by NICEATM. The intent is to make the SARA model openly available for public use along with other NICEATM predictive models. Availability of the SARA model will help further reduce animal use for the endpoint of skin sensitization, and will improve upon existing efforts by providing points of departure for quantitative human risk assessment.

<u>Information about other NICEATM projects</u> to evaluate alternatives to animal use for skin sensitization is available at <u>https://ntp.niehs.nih.gov/go/ACDtest</u>.

Reference: <u>Reynolds et al.</u> Probabilistic prediction of human skin sensitizer potency for use in next generation risk assessment. Comput Toxiol 9:36-49. <u>https://doi.org/10.1016/j.comtox.2018.10.004</u>

 The goal of the project is to develop a version of the SARA model for different skin sensitisation hazard and risk assessment regulatory use-cases.

• The project has a capability build phase and an evaluation phase.

 SARA-ICE model will be included in the OECD workplan for OECD DASS TG497

Conclusions & Next Steps

- Significant progress has been made in the last decade to apply non-animal experimental data using Defined Approaches & tiered frameworks.
- Bayesian DAs enable experimental data variability to be modelled and uncertainty in PoDs & risk metrics to be factored into decision-making.

- Recently published NGRA framework SARA case studies: Reynolds *et al.*, 2021 and Gilmour *et al*, 2022.
- NICEATM collaboration established to evaluate SARA, expand the approach and make it publicly available.
- In-house work ongoing to explore new SARA inputs & expand the database, including risk benchmarks.

USENS

profiling

Metabolism

Peptide reactivity

lecular Structu

(PCA)

clinical data

Acknowledgements

Georgia Reynolds Joe Reynolds Nicola Gilmour Nora Aptula Katarzyna Przybylak Sam Windebank **Gavin Maxwell Sandrine Spriggs Richard Cubberley**

