QIVIVE (quantitative in vitro-in vivo extrapolation) – bridging in vitro POD using PBK modelling. -A case study

Unilever Safety & Environmental Assurance Centre (SEAC)

Our products must be safe

Can we make decisions on these people's safety?

The decisions we make about the safety of our products are for our consumers and workers all around the globe

Making safety decisions without generating data in animals

- Regulations ban animal testing of cosmetic products and their ingredients in over 40 countries
- Many of our consumers do not want to buy products associated with animal testing
- Our safety assessments use a variety of non-animal approaches from QSARs/read across, 'traditional' in vitro approaches, and into Next Generation Risk Assessment (NGRA)

From traditional risk assessment to next generation risk assessment

Animal testing for **cosmetics** is officially **banned** in 40 countries

Unilever

developing and applying new approach methodologies (NAMs) without generating new animal data

What is PBK (physiologically based kinetic) modelling?

Input

ADME properties

Absorption, Distribution, Metabolism, Excretion

- > Physiological parameters (e.g. body weight, blood flow rates, tissue volume)
- > Physico-chemical parameters (e.g. LogP, Fup, tissue/plasma partition coefficients)
- > Kinetic parameters (e.g. dermal absorption, hepatic metabolism, renal excretion)
- > Product use information (e.g. dose, frequency, site area, formulation)

Unilever

Output

R&D - SEAC

How it works

MATLAB® The Language of Technical Computing

Continuous Simulation Software

R&D - SEAC

BERKELEY MADONNA Modeling and Analysis of Dynamic Systems

Commercial Software

Publicly Available Tools

Unilever

Objective

Toxicology in Vitro Volume 74, August 2021, 105171

Next generation risk assessment (NGRA): Bridging *in vitro* points-of-departure to human safety assessment using physiologically-based kinetic (PBK) modelling – A case study of doxorubicin with dose metrics considerations

Hequn Li^a, Haitao Yuan^b, Alistair Middleton^a, Jin Li^a, Beate Nicol^a, Paul Carmichael^a, Jiabin Guo^b, Shuangqing Peng^b 유 國, Qiang Zhang ^c 유 國

Using the chemical doxorubicin (DOX), the objective was to evaluate the impact of dose metrics selection in the new approach method of integrating physiologically-based kinetic (PBK) modelling and relevant human cell-based assays to inform *a priori* the point of departure for human health risk.

<u>Hequn Li</u>, et al., Next generation risk assessment (NGRA): Bridging in vitro points-of-departure to human safety assessment using physiologically-based kinetic (PBK) modelling – A case study of doxorubicing with dose metrics considerations, Toxicology in Vitro, Volume 74, 2021, 105171,

Workflow

Doxorubicin (Dox) case study

Cardiotoxic

- Chemotherapy medicine used to treat cancer
- Reactive oxygen species (ROS) production increased through metabolism
- ROS causes DNA damage, lipid peroxidation and decreased glutathione levels

Cardiotoxicity of DOX in clinical

Unilever

Mitochondrial Mechanism of Doxorubicin-Induced Cardiotoxicity and Hypothesis

Hypothesis: DOX perturbs PGC-1α pathway to induce adaptive/adverse response resulting in alteration of mitochondrial oxidative stress and disruption of biogenesis

In-vitro tipping point found in our collaboration work with AMMS

•

Unilever

---- Drug washout -----

- - - Drug washout - - - +

C

(11)

Key concentrations derived from in vitro studies

Exposure	Cells	C _{max,total}	C _{max,free}	AUC _{total} (nM·h)	AUC _{free} (nM∙h)	Key metrics type
Single: 125 nM 12 h	AC16	125	125	1500	1500	PoD
Single: 250 nM 12 h	AC16	250	250	3000	3000	Тохіс
Single: 156 nM 48 h	hiPSC- CMs	156	131	7488	6290	PoD
Repeated: 156 nM 96 h	hiPSC- CMs	156	131	14976	12580	Тохіс
Repeated: 156 nM 144 h	hiPSC- CMs	156	131	22464	18870	Тохіс

Determination of free concentration:

- assuming that DOX binds only to serum protein, but not to plastic,
- *in vitro* free concentration C_{free} was calculated as C_{nominal*}Fu_{in vitro} (fraction of chemical unbound in the *in vitro* assay)

$$\mathbf{Fu}_{in \, vitro} = \frac{1}{\frac{C_{albumin,in \, vitro}}{C_{albumin,plasma}} \left(\frac{1-Fup}{Fup}\right) + 1}$$

Fup is the unbound fraction of chemical in human plasma , C_{albumin,in vitro} the concentration of albumin used in the *in vitro* assay, C_{albumin,plasma} the concentration of albumin in human plasma (42.5 g/L).

PBK model construction for doxorubicin

PBK structure

DOX binds to DNA

Key chemical specific parameters used in the PBK model for DOX

Parameters	Value	Source
LogP	1.27	[40]
Fup	0.25	[41] [42]
p <i>Ka</i>	7.34 (phenol); 8.46 (αmine); 9.46	[43]
	(est)	
CL _{total}	0.894±0.308 L/h/kg	[19]
CL _{renal}	0.152±0.110 L/h/kg	[19]
b/p ratio	1.72±0.42	Value converted from the measured erythrocyte/plasma
		concentration ratio of 2.8±0.3 for DOX [44]

LogP, Logarithm of octanol-water partition coefficient;

Fup, Fraction unbound to plasma;

pKa, Logarithm of acid dissociation constant;

CLtotal, Total clearance rate;

CL_{renal}, Renal clearance rate;

b/p ratio, blood/plasma concentration ratio.

Kp, tissue/plasma partition coefficients;
FuExt, unbound fraction in extracellular space;
FuInt, unbound fraction in intracellular space;
PStc, permeability*tissue cellular surface area product.

	Кр	FuExt	Fuint	PStc (ml/s)		
Lung	0.41	0.611	0.0005	10		
Adipose	0.29	0.872	0.0005	10		
Liver	0.31	0.795	0.0005	25		
Heart	0.37	0.680	0.0005	10		
Brain	0.29	0.874	0.0005	10		
Bone Marrow	0.37	0.680	0.0005	10		
Kidney	0.35	0.719	0.0005	10		
Muscle	0.30	0.839	0.0005	10		
Skin	0.46	0.546	0.0005	10		
Rest of body	0.34	0.732	0.0005	10		
Method	Poulin ar	nd Theil, 2000;	optimized	optimized		
	Poulin ai	nd Theil, 2002				

Local sensitivity analysis

plasma Cmax free
 plasma Cmax total
 plasma AUC total
 plasma AUC free
 heart Cmax free
 heart Cmax total
 heart AUC total
 heart AUC free

All model parameters with normalized sensitivity coefficients smaller than - 0.03 and larger than 0.03 are shown.

PBK model development and verification against human PK data

Model development

Model verification

Comparison of observed and PBK simulated plasma and bone marrow C_{max} and $AUC_{0-\infty}$ of DOX following i.v. administration of various dosing regimens.

			(A) 8-hour infusion of 30 mg/m2/day DOX	(B) Bolus injection of 30 mg/m²/day DOX	(C) 72-h infusion of 30 mg/m²/day DOX	(D) 30-min infusion of 0.9 mg/kg/day DOX	(E) 96-h infusion of 9 mg/m2/day DOX
C _{max} (ng/ml)	Plasma	observed	85.1	1627.1	74.4	1331.3	16.8
		simulated	78.8	3443.3	43.4	1160.7	14.1
		fold difference	1.1	2.1	1.7	1.1	1.2
	Bone marrow intracellular	observed	9380.4	12625.3	12857.8		
		simulated	10565.2	14123.6	13028.7		
		fold difference	1.1	1.1	1.0		
	Plasma	obs	2996.3	2346.4	4674.8	1035.9	1626.4
(ng/mt·n)		simulated	3032.2	3903.9	3680.6	1158.8	1945.7
		fold difference	1.0	1.7	1.3	1.1	1.2
	Bone marrow intracellular	obs	1147827.2	1047141.6	1787445.7		
		simulated	1251425.5	1604248.9	1517515.8		
		fold difference	1.1	1.5	1.2		

Literature search on clinical cardiotoxicity data of DOX

Participants Age (years)	No. of patients	Interventio n ^a	DOX regimens			Toxicity evaluation	Follow-up duration	Cardiotoxicity observed				
		•		Dose (mg/m²/da y)	i.v. injection type	duration	criterion		After 1st treatment	After 1st cycle	During whole study	CHF⁵
Adults with multiple myeloma (MM)	41-75	37	PAD/TD	4.5	Continuous infusion	6 cycles	СТС	27-month (13-39)	no	no	no	no
Adults with relapsed MM	37-66	4	PAD	4.5	Continuous infusion	4 cycles	CTC	not mentioned	no	no	no	no
Adults with MM	15-66	32	PAD	9	Bolus injection	2 cycles	СТС	49.5-momth (30.5-68.1)	no	no	no	no
Adults with untreated MM	15-65	139	VAD	9	30 min infusion	6 cycles	WHO	at least 12- month	One patient had cardiac dysrhythmias no and one had myocardial infraction			no
Adults with relapsed or refractory MM		13	iPAD	9	30 min infusion	6 cycles	СТС	21-month	no	no	no	no
Adults with newly diagnosed MM	34-65	20	PAD	9	Continuous infusion	2 cycles	СТС	24-month	no	no	no	no
Adults with relapsed MM	37-66	14	PAD	9	Continuous infusion	4 cycles	СТС	not mentioned	no	no	no	no
Adults with MM	29-80	50	VAD	9	Continuous infusion	6 cycles	cardiac examination was carried out before each cycle	70-month	no	no	One patient developed cardiotoxicit y	no
Women with epithelial ovarian carcinoma	39-73	17	paclitaxel and DOX	7.5,10,12.5,1 5	Continuous infusion	3 cycles	СТС	not mentioned	no	Two subjects asymptomat ventricular fu	had an ic drop in left inction	no

For 4 days as a cycle, repeated every 3 weeks,

Summary of the dosing regimens with no or mild cardiotoxicity

	Cardiotoxicity observed			
Dose (mg/m²/day)	i.v. injection type	Cycle	Number of cycles in total	
4.5	Continuous infusion	Treated for 4 days as a	6 cycles	No cardiotoxicity observed
9	Bolus injection	cycle, repeated every	2 cycles	No cardiotoxicity observed
9	30 min infusion	three weeks	6 cycles	Mild cardiotoxicity observed
9	Continuous infusion		2 cycles	No cardiotoxicity observed
9	Continuous infusion		4 cycles	No cardiotoxicity observed
9	Continuous infusion		6 cycles	Mild cardiotoxicity observed

These dosing regimens were selected and simulated with the PBK model to make predictions on AUC and C_{max} in plasma and tissue.

Unilever

it is possible to combine PBK modelling of human exposure with in vitro-derived toxicity information to predict the potential risk of different exposure levels in humans

Conclusion

- Combined with PBK modelling, the *in vitro* information obtained from toxicity pathway-based cell assays is useful in informing human cardiovascular risk of DOX.
- The unbound heart AUC and plasma AUC are good metrics to link *in vitro* findings to human risk of DOX on cardiotoxicity as in vitro PoD has shown good predictivity on human safe exposure level when these two metrics were used.
- The DOX AUC metric appeared to be more conservative than the C_{max} metric from the human safety perspective.

Challenges ahead

- How good are in vitro assays?
 - \circ reliability of in vitro model
 - o duration of exposure (e.g. Repeat dose)
 - o in vitro kinetics (e.g. active transporters, metabolism)

• Clinical data

- o chronic effects are more prevalent pose challenge to be compared to in vitro data
- IVIVE
 - Some uncertainty related to tipping points (e.g., pathway models)
 - What about using cellular concentrations as the dose metric to make the link?
 - Predicting heart concentration: DOX is reported to be actively transported the predictions could be wrong

More case studies are needed!

Acknowledgement

Unilever