Integration of Endocrine Modalities into an Existing Mechanism of Action-based in silico Scheme for use in Environmental Risk Assessment

<u>James W. Firman</u>^a, Franklin J. Bauer^b, Geoff Hodges^c, Gaspard Levet^b, Bruno Campos^c, Jayne Roberts^c, Steve Gutsell^c, Homa Basiri^a, Paul C. Thomas^b, Mark T.D. Cronin^a

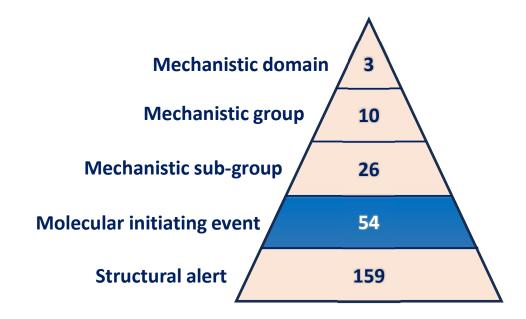
^aLiverpool John Moores University, Liverpool, UK ^bKREATiS SAS, L'Isle d'Abeau, France ^cUnilever SEAC, Sharnbrook, UK

LJMU Mechanistic Profiling Scheme

Structural profiling tool enabling assignment of putative mechanism of toxic action to screened substances:

- Coverage and detail enhanced relative to schemes of Verhaar (1992) and Russom (1997)
- Anchored at level of molecular initiating event (MIE)
- Considerate of mammalian, arthropod, fish, plant, and microorganism species

Development of an Enhanced Mechanistically Driven Mode of Action Classification Scheme for Adverse Effects on Environmental Species


Maria Sapounidou, David J. Ebbrell, Mark A. Bonnell, Bruno Campos, James W. Firman, Steve Gutsell, Geoff Hodges, Jayne Roberts, and Mark T. D. Cronin*

Environ. Sci. Technol., 2021, 55, 1897-1907

Construction of an In Silico Structural Profiling Tool Facilitating Mechanistically Grounded Classification of Aquatic Toxicants

James W. Firman,* David J. Ebbrell, Franklin J. Bauer, Maria Sapounidou, Geoff Hodges, Bruno Campos, Jayne Roberts, Steve Gutsell, Paul C. Thomas, Mark Bonnell, and Mark T. D. Cronin

Environ. Sci. Technol., 2022, 56, 17805-17814

Profiling scheme: Organisation and present scope

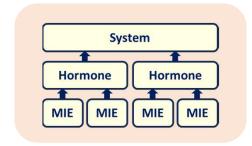
Representative pathways:

Focus has remained upon acute manifestation of toxicity

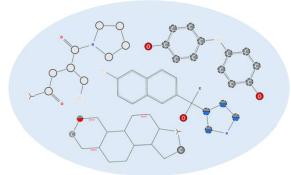
Mechanistic domain overview:

1. Narcosis	"Baseline" toxicity Cell membrane accumulation	Group Sub-group MIE SA	2 4 4 22	 1.2. Enhanced narcosis 1.2.1. Polar narcosis 1.2.1.1. Membrane phospholipid accumulation 2.2.1.1.11. Quaternary ammonium
2. Reactive	Non-specific chemical reactivity Biomolecule modification	Group Sub-group MIE SA	3 7 15 63	2.2. Electrophilic reactivity 2.1.2. Hard electrophilicity 2.1.2.1. Acylation 2.1.2.1.1. Carboxylic anhydride
3. Specific	<u>Defined bioactivity</u> Receptor/enzyme interaction	Group Sub-group MIE SA	5 15 35 74	3.2. Bioenergetic dysfunction 3.2.1. Oxidative phosphorylation 3.2.1.2. Inhibition of mETC complex III 3.2.1.2.2. Bixafen-like

However, chronic endpoints – such as those associated with endocrine activity – are also of great significance


Expansion of scheme coverage: Endocrine activity

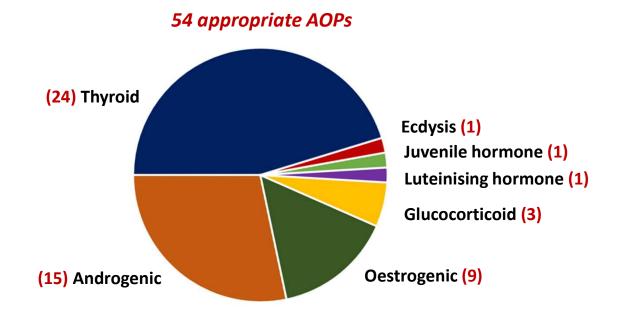
Gather key information upon endocrine pathophysiology


- Essential systems and pathways
- Established/credible AO causality
- Range of appropriate taxa

Organise knowledge within formalised framework

- Series of event-aligned tiers
- Standardisation of terminology
- Relates MIE to downstream effect

Devise structural alerts which characterise MIEs



- Sourcing of MIE-active substances
- Definition of key chemical features
- Formulation of alert rules

Sourcing of knowledge relating to endocrine activity

Broader literature further consulted

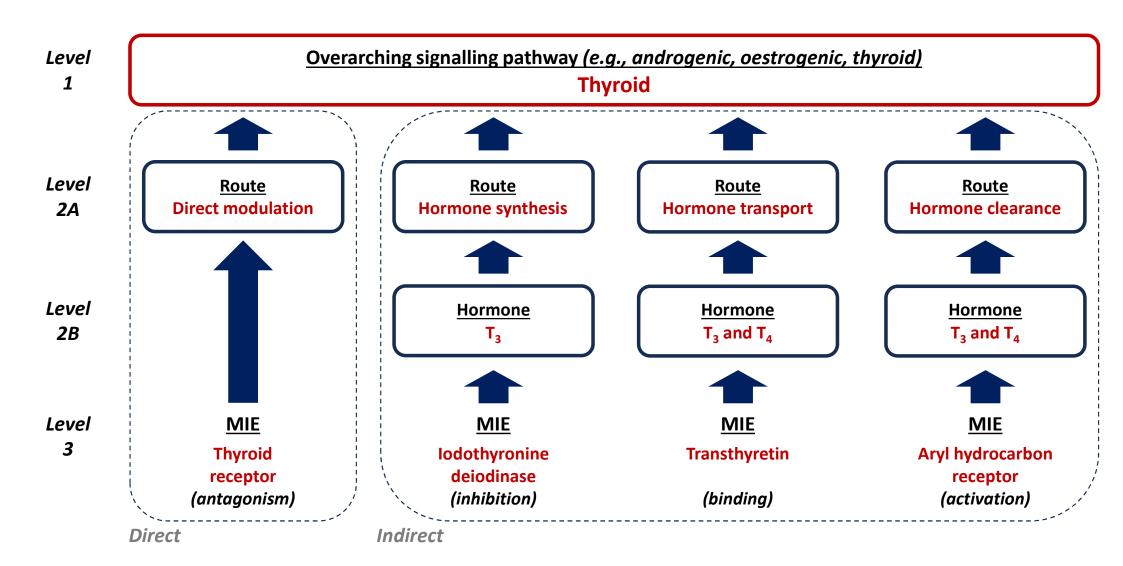
Neither list exhaustive

Endpoints encountered

Reproductive impairment

Neurodevelopmental abnormality

Carcinogenicity

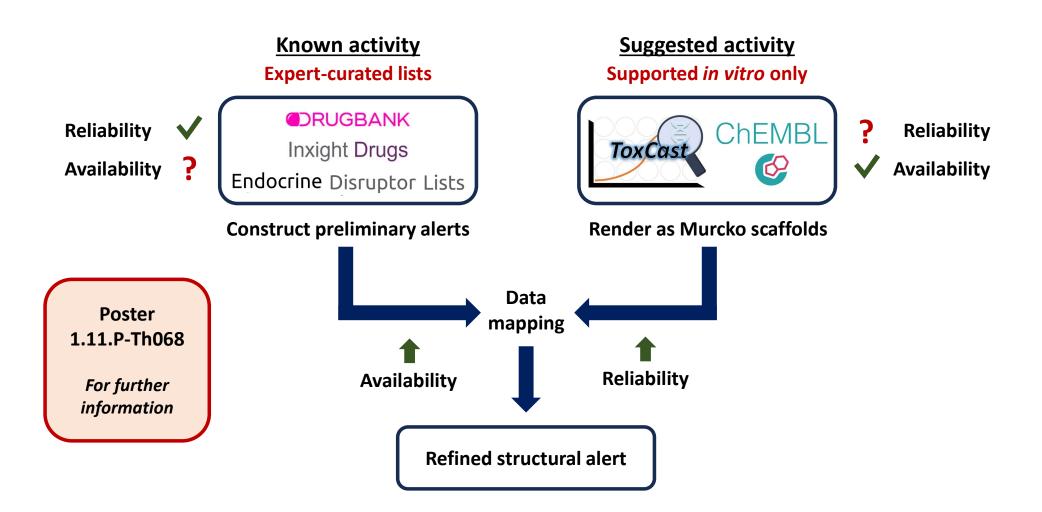

Impacted species and taxa

Mammalian (inc. Homo sapiens)

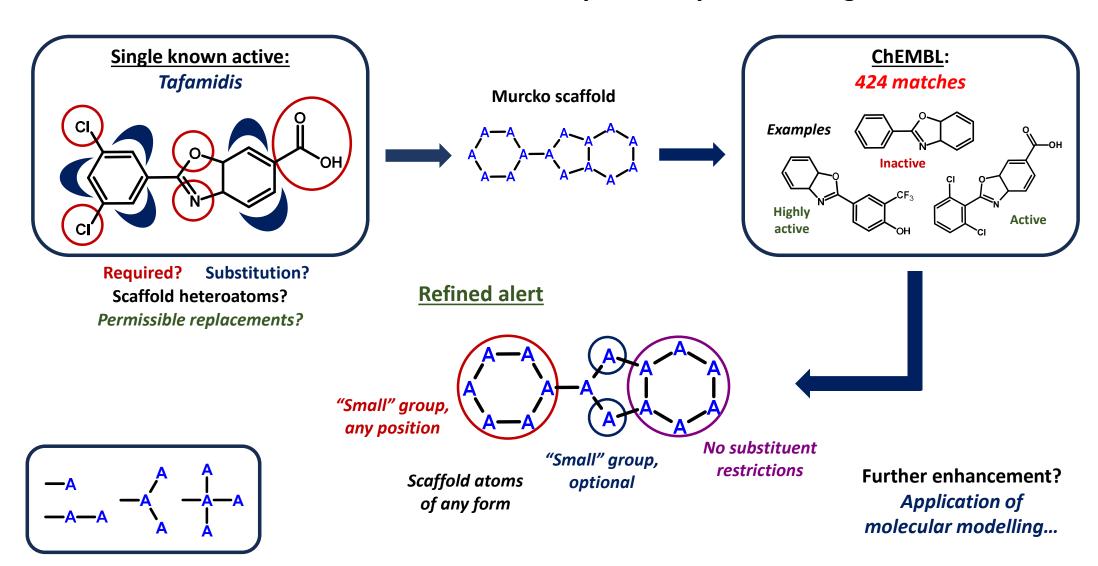
Fish

Arthropod

Overview of endocrine activity ontology framework


Molecular initiating event targets

28 distinct, endocrine-associated target sites identified:


MIE target site	Route impacted	Signalling pathway	MIE target site
11β-Hydroxysteroid dehydrogenase	Hormone synthesis	Androgenic	Pendrin
Androgen receptor	Direct modulation	Androgenic	PPAR-α
Aromatase	Hormone synthesis	Oestrogenic	PPAR-γ
Aryl hydrocarbon receptor	Hormone clearance	Thyroid	Pregnane X recep
Dual oxidase	Hormone synthesis	Thyroid	Progesterone recep
Ecdysone receptor	Direct modulation	Ecdysteroid	Steroid 11β-hydroxy
Glucocorticoid receptor	Direct modulation	Glucocorticoid	Steroid 17α-monooxy
lodothyronine deiodinase	Hormone synthesis	Thyroid	Steroid 5α-reducta
lodotyrosine deiodinase	Hormone synthesis	Thyroid	Succinate dehydroge
Juvenile hormone receptor	Direct modulation	Juvenile hormone	Thyroid hormone red
Luteinising hormone receptor	Direct modulation	Luteinisation	Thyroid peroxida
Na+/I- symporter	Hormone synthesis	Thyroid	Thyrotropin hormone r
Octopamine receptor	Direct modulation	Octopaminergic	Thyrotropin-releasing horm
Oestrogen receptor	Direct modulation	Oestrogenic	Transthyretin

MIE target site	Route impacted	Signalling pathway
Pendrin	Hormone synthesis	Thyroid
PPAR-α	Hormone synthesis	Androgenic
PPAR-γ	Hormone synthesis	Oestrogenic
Pregnane X receptor	Hormone clearance	Thyroid
Progesterone receptor	Direct modulation	Progestogenic
Steroid 11β-hydroxylase	Hormone synthesis	Androgenic
Steroid 17α-monooxygenase	Hormone synthesis	Androgenic
Steroid 5α-reductase	Hormone synthesis	Androgenic
Succinate dehydrogenase	Hormone synthesis	Thyroid
Thyroid hormone receptor	Direct modulation	Thyroid
Thyroid peroxidase	Hormone synthesis	Thyroid
Thyrotropin hormone receptor	Hormone synthesis	Thyroid
Thyrotropin-releasing hormone receptor	Hormone synthesis	Thyroid
Transthyretin	Hormone transport	Thyroid

Recovery and classification of MIE activity data

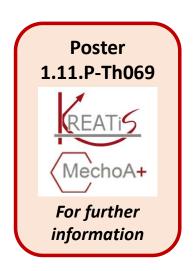
Alert-construction case study: Transthyretin binding

Ongoing and intended future developments

Expansion and refinement of ontology framework:

- Sourcing of additional MIE targets (particularly non-mammalian)
- Establishment of interplay between downstream adverse effects
- Enhanced confidence in taxonomical and species applicability

Refinement of structural alerts and rules:


- Identification of further candidates for alert development
- Continued refinement of those existing (assisted through molecular modelling)

Rule integration and implementation:

- As part of broader LJMU scheme (OECD QSAR Toolbox)
- Within KREATiS MechoA system

Thank you for your attention

Further information:

j.w.firman@ljmu.ac.uk