

MULTIPLE CONTAMINANTS IN COMPLEX COMMUNITIES EVALUATING NON-ADDITIVE EFFECTS OF MULTIPLE SIMULTANEOUS STRESSORS ON BIOMASS FLUX AND ECOSYSTEM FUNCTIONING

Top consumer

Producer

Intermediate consume

Variation in…

Hana Mayall

hbmayall1@sheffield.ac.uk

Current approaches to **environmental risk assessment** (ERA) are often limited to assessing the effect of single contaminants on single species, **CHALLENGE**
Current approaches to environmental risk assessment (ERA)
overlooking the effects that can occur at higher ecological scales.

Supervisors: Andrew Beckerman, Dylan Childs, Lorraine Maltby, Claudia Rivetti

REVETIMING ERA

How do multiple contaminants

impact biodiversity, stability

and ecosystem function through. impact biodiversity, stability and ecosystem function through…

Can we develop tools for ERA that allow us to evaluate how **multiple contaminants** acting on **multiple traits** among species in communities impact **biodiversity, stability and ecosystem function**?

RESULTS RESCALED DEVIATION FROM ADDITIVITY of Community Biomass

Top consumer

Intermediate consumer

Target trait (*mode of action*) Target species (*contaminant specificity*) Target trophic level Community size, structure and complexity Environmental conditions

Food Web modelling

Biomass dynamics in a community are determined by species traits [1]

METHODS

FUTURE WORK

Rescaled DA for Community Biomass

> 2.0 1.3 0.5

> > -9.5

Community biomass is differentially impacted depending on the **trait and trophic level** targeted by the pesticide

Additivity, antagonistic buffering and antagonistic suppression are the most commonly observed interaction types, with **no synergy** observed

Antagonistic suppression is observed when pesticides target **foraging** in the **intermediate consumer**, due to compensatory biomass dynamics inherent to the model resulting in reallocation of biomass among trophic levels 3

1. Explore buffering and suppression of total biomass by exploring biomass re-allocation across trophic levels 2. Apply method to stability 3. Expand community complexity

References

metabolism Metabolism Foraging Trait Rate Foraging $QQQQQQQQQQ$ Growth \boldsymbol{C} Stressor intensity **GROWTH** 3 species case study Measuring Biomass Varying target trait Pesticide Contro top Metabolism of TOP 0.8 Foraging of top

[1] Williams, Brose & Martinez (2007) Homage to Yodzis and Innes 1992: Scaling up feeding-based population dynamics to complex ecological networks [2] Tekin *et al.* **(2020) Using a newly introduced framework to measure ecological stressor interactions**

In silico experimental design

- Use differential equation **food web model** to simulate dynamics of plausible **tri-trophic** food chain
- Specify inhibitory **contaminant effects** on populations via linear reductions or increases of trait rates
- Generate 2-contaminant scenarios with
	- **1 herbicide targeting growth** and
	- **1 pesticide targeting either metabolism or foraging**
- Measure **community biomass**
- **Classify interactions** by calculating deviation from additivity of community biomass**[3]**

Using Tekin *et al.*'s framework for measuring **ecological stressor interactions [2]** , which incorporates;

- **Standardisation** of effect sizes (rescaling)
- **Categorisation** of interaction types
- Measures **Deviation from Additivity** (DA) - Synergy, Buffering and Suppression

1 2

Contaminant Effects

Classifying Interactions

- Synergy joint effect greater than sum of its parts
- Additive no interaction
- Antagonistic buffering joint effect smaller than sum of its parts
- Antagonistic suppression (negative) effect of negative stressor masks that of the positive stressor
- Antagonistic suppression (positive) effect of positive stressor masks that of the negative stressor