Practical use of Bioactivity Exposure Ratio (BER) in animalfree cosmetic ingredient risk assessment:

Matt Dent, Unilever Safety and Environmental Assurance Centre, UK

Practicality of BERs in a tiered approach

Specific or Generic Predictive or Protective

Protection and prediction in current and future assessment approaches

Practical considerations

- Confidence in exposure predictions (including role of metabolism)
- Breadth of biological coverage (how much is enough?)
- Common understanding of the meaning of the BER ...and its place in a tiered NGRA

Practical considerations

- Confidence in exposure predictions (including role of metabolism)
- Breadth of biological coverage (how much is enough?)
- Common understanding of the meaning of the BER ...and its place in a tiered NGRA
- How confident can you be in the use of BER for safety decision making?

Breadth of biological coverage

Historical: animal in vivo

"It's easy to say that models are wrong. The hard part is figuring out which models are useful and how wrong they are." (George Box)

New: human-derived in vitro

IC/CS

Practical utility of BERs can only be determined by benchmarking safety decisions

PBK Level 2 Correlation with risk category: -0.77

Including relevant benchmarks

Lessons from testing broader chemical space

Unilever

Which NAMs contribute to the protection?

Pharmacological	Cell Stress	HTTr – Gene	HTTr – BMD minimum	Protectiveness	Utility
profiling	Panel		pathway		
Y	Y	Y		96% (44 out of 46)	29% (7 out of 24)
Y	Y		Y	83% (38 out of 46)	54% (13 out of 24)
		Y		89% (41 out of 46)	33% (8 out of 24)
			Y	48% (22 out of 46)	62% (15 out of 24)
Y		Y		96% (44 out of 46)	29% (7 out of 24)
Υ			Y	74% (34 out of 46)	54% (13 out of 24)

For this toolbox and benchmarks, the cell stress panel does not add to the level of protection if the gene-level HTTr PoD is used

The level of protection depends on the tools used and the analysis methods

As a low-tier approach, it is designed to be conservative, and where BER is insufficient, this allow you to identify areas for refinement

Lessons from practical application of BERs

- BERs provide a robust basis for safety decisions
- An acceptable (low risk) BER is dependent on the toolbox and analysis techniques used Hence the need to define for the combination of tools used
- "uncertain risk" isn't the same as "high risk": the risk assessment is tiered
- BERs need to be integrated with other lines of evidence (existing data, in silico predictions)
- Suitability of benchmarks needs to be considered (are relevant benchmarks included?)

(12)

Acknowledgements

Julia Fentem Maria Baltazar Sophie Cable **Paul Carmichael Richard Cubberley Jade Houghton Predrag Kukic** Sophie Malcomber **Alistair Middleton Beate Nicol Joe Reynolds Sharon Scott**

Ans Punt Ruth Pendlington Katie Przybylak Sandrine Spriggs Carl Westmoreland Andrew White Cosmetics Europe's LRSS The International Collaboration on Cosmetic Safety

Thank You

seac.unilever.com

