Use of complex hepatic models for a fit-forpurpose metabolism assessment of ingredients for use in Next Generation Risk Assessment

CHARLES RIVER-SOLVO Poster Blitz 10th May 2024

INTRODUCTION/BACKGROUND

- Next Generation Risk Assessments use a battery of in vitro tools and assays
- Metabolism framework/testing strategy developed
- Metabolism not always well assessed in in vitro cell assays (cell lines have poor metabolic capacity, exposure time not appropriate)
- We present two in vitro assays using of HepaRG cells

Optimization of the HepaRG cell model for drug metabolism and toxicity studies

Sébastien Anthérieu^{a,b}, Christophe Chesné^c, Ruoya Li^c, Christiane Guguen-Guillouzo^{a,b}, André Guillouzo^{a,b,*}

^a Inserm UMR 991, Rennes, France ^b Université de Rennes 1, Rennes, France ^c Biopredic International, Saint-Grégoire, France

HEPARG TOROID IN CO-CULTURE SYSTEM

Liver 2D target Media

Cross-section view

schematic

Unilever

Design the HepaRG toroid:

- Optimisation of media
- Cell density with imaging to check sausage-like organoids formation
- mRNA expression of major CYPs
- Check agarose permeability for CYPS probes
- CYPs activity measured using probes (phenacetin, bupropion, testosterone, verapamil)
- LC-MS measurements of media and tissue lysates

Initial cell seeding density

HEPARG TOROID IN CO-CULTURE SYSTEM

Unilever

Co-culture HepaRG Toroid and AR-Calux cells:

- Culture HepaRG toroid 10 days
- Add AR-Calux cells and wait 24h
- Treat with testosterone for 24h
- Effect of testosterone treatment is less pronounced in the AR-Calux cells when HepaRG toroid is present (detoxification)

> Toxicol Sci. 2024 Feb 9:kfae018. doi: 10.1093/toxsci/kfae018. Online ahead of print.

Development of a human liver microphysiological co-culture system for higher throughput chemical safety assessment

Blanche C Ip ¹ ², Samantha J Madnick ¹ ², Sophia Zheng ¹, Tessa C A van Tongeren ³, Susan J Hall ¹, Hui Li ¹, Suzanne Martin ⁴, Sandrine Spriggs ⁴, Paul Carmichael ⁴, Wei Chen ⁵, David Ames ⁵, Lori A Breitweiser ⁵, Heather E Pence ⁵, Andrew J Bowling ⁵, Kamin J Johnson ⁵, Richard Cubberley ⁴, Jeffrey R Morgan ¹ ², Kim Boekelheide ¹ ²

Affiliations + expand PMID: 38335931 DOI: 10.1093/toxsci/kfae018

HEPARG AS A TOOL TO RISK ASSESS REACTIVE METABOLITES

Cell Stress Panel is a high throughput imaging assay developed to assess up to 36 biomarkers.

Reactive metabolites formed in situ can influence levels of:

- GSH, ROS MMP, LDH and ATP
- DNA (damage)
- PLD and Steatosis

All these biomarkers have shown a good prediction for DILI but can be useful for more generic toxicities in cells. <u>Toxicol Sci.</u> 2020 Jul; 176(1): 11–33. Published online 2020 May 6. doi: <u>10.1093/toxsci/kfaa054</u> PMCID: PMC7357173 PMID: <u>32374857</u>

Identifying and Characterizing Stress Pathways of Concern for Consumer Safety in Next-Generation Risk Assessment

<u>Sarah Hatherell</u>,^{k1} <u>Maria T Baltazar</u>,^{k1} <u>Joe Reynolds</u>,^{k1} <u>Paul L Carmichael</u>,^{k1} <u>Matthew Dent</u>,^{k1} <u>Hequn Li</u>,^{k1} <u>Stephanie Ryder</u>,^{k2} <u>Andrew White</u>,^{k1} <u>Paul Walker</u>,^{k2} <u>and Alistair M Middleton</u>^{k1}

► Author information ► Copyright and License information PMC Disclaimer

HEPARG AS A TOOL TO RISK ASSESS REACTIVE METABOLITES

Chemical ID	CAS number	MW (g/mol)	Reactive metabolite of interest (a)	Cytotoxicity top dose in assay (µM) (b)
Diclofenac [sodium salt]	15307-79-6	318.13	Quinoneimine (after CYP formation of 5- hydroxydiclofenac)	500
Acetaminophen	103-90-2	151.16	NAPQI (quinoneimine)	2000
Sunitinib [malate]	341031-54-7	532.56	Quinoneimine (formed after CYP induced oxidative defluorination)	200
Fialuridine	69123-98-4	372.09	Metabolites generated via CYPs	500
Troglitazone	97322-87-7	441.54	Quinone and o-quinone methide	200
Ketoconazole	65277-42-1	531.43	Reactive metabolite via CYP3A4	500
Cyclophosphamide	6055-19-2	279.1	Phosphoramide mustard	2000
Eugenol	97-53-0	164.2	Quinone type	500
Methyl eugenol	93-15-2	178.23	Non-reactive metabolite	500
Hydroquinone	123-31-9	110.11	Quinone	200
Retrorsine	480-54-6	351.39	Dehydroretrorsine via CYP3A4	500
4-Hexylresorcinol	136-77-6	194.27	Quinone type	500

• Plate design allow for the analysis of 12 compounds

- Chemicals selected have a high potential for reactive metabolite formation (often quinone types)
- Tested in plated HepG2 (up to 72h), plated HepaRG (up to 72h) and HepaRG spheroids (up to 14 days)
- Derive PoDs using internal BIFROST model to assess the impact of metabolism on bioactivity.

CONCLUSION/NEXT STEPS

- HepaRG cells are a useful in vitro tool
- Demonstrated good Metabolic activity when cultured in 3D (here in toroid)
- Demonstrated stable metabolite formation in amounts sufficient to have an effect on target cells
- Further work to demonstrate effect of reactive metabolites on the HepaRG cells themselves currently ongoing

<u>Unilever SEAC</u> Sandrine Spriggs Richard Cubberley Sharon Scott Maria Baltazar

Brown University Kim Boekelheide Blanche Ip

<u>Cyprotex UK</u> Caroline Bauch Paul Walker

Thank You

seac.unilever.com

