Using An *In Silico* NAMs Approach To Predict Bioaccumulation In Fish:

A Case Study For Anionic Surfactants Within A Regulatory Context

Introduction

- Bioaccumulation endpoint required for registered substances exceeding the 100 t/y threshold (Annex IX)
 - Hyalella azteca bioconcentration test (HYBIT)
 - Intrinsic hepatic/S9 clearance in vitro assays (OECD 319/IVIVE methods)
 - QSAR models e.g. Episuite, T.E.S.T, VEGA

- No longer possible to waive BCF based on $logK_{ow}$
- Experimental methods technically challenging for surfactants
- Computational methods also have limited reliability
- Weight of Evidence (WoE) approach using logK_{mw} in conjunction with toxicokinetic models

Specific consideration for surfactants

Case study – alkyl isethionates

- SLI = Sodium Lauryl Isethionate
- SLMI = Sodium Lauryl Methyl Isethionate
- SCI = Sodium Cocoyl Isethionate
- DEFI = De-Esterified Fatty Isethionate

C12 chain

- C12 chain + methyl branch
- C8-C18 (predominately C12-C14)
- C8-C18 (predominately, C12, 16, 18)
- pKa = 1.08 (will exist in the ionised form under environmental conditions)

Tiered approach

Droge et al (2021) Environ. Sci.: Processes Impacts, 2021,23, 1930-1948

Tier 1 – BCF screening equation using membrane-water partition/distribution coefficient (log*K*/*D*_{mlw})

In silico profiling

Realistic sorption affinity to fish tissue NO BIOTRANSFORMATION INCLUDED

Tier 2 – Higher tier model refinement (BIONIC v3)

INCLUDES BIOTRANSFORMATION

In silico screening

• Bioaccumulation profiling conducted for all components in each substance

Laboratory of Mathematical Chemistry Catalogic

Bioaccumulation – Metabolism Alerts Bioaccumulation – Metabolism half-lives

'Fast' or 'very fast' biotransformation/ metabolism half-lives for all components LogBCF generated using the BCF baseline model DP v.02.08 from CATALOGIC v5.16.1

Positive correlation with chain length, all components < 2000 L/kg but this is logK_{ow} based therefore of limited applicability to surfactants

Tier 1 – Log*D*_{mlw} baseline screening

 $BCF_{baseline}$ (ionic surfactants) = 0.0125 * D_{mlw} where 0.0125 = phospholipid fraction of fish

or

 $logBCF = logD_{mlw} - 1.9$

Screening cut-offs: ≥ 5.2 (ionic) = BCF ≥ 2000 potentially B ≥ 5.6 (ionic) = BCF ≥ 5000 potentially vB

Droge et al (2021) Environ. Sci.: Processes Impacts, 2021,23, 1930-1948

(7)

Tier 1 – Log *D*_{mlw} baseline screening

Name	Chain length (CL)	logD _{MLW}	logBCF	BCF (L/kg)
Sodium caproyl isethionate	8	3.50	1.60	39.81
Sodium decanoyl isothionate	10	3.63	1.73	53.70
Sodium lauroyl isethionate	12	4.42	2.52	331.13
Sodium myristoyl isethionate	14	4.95	3.05	1122.02
Sodium palmitoyl isethionate	16	5.41	3.51	3235.94
Sodium stearoyl isethionate	18	5.92	4.02	10568.18
Sodium lauroyl methyl Isethionate	12(1)	4.79	2.89	776.25

Tier 2 BIONIC model

Armitage, J. M., Erickson, R. J., Luckenbach, T., Ng, C. A., Prosser, R. S., Arnot, J. A., Schirmer, K., & Nichols, J. W. (2017). Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. Environmental Toxicology and Chemistry, 36(4), 882–897. https://doi.org/10.1002/etc.3680

https://sites.google.com/view/bionic-v3/home

In vitro hepatic clearance S9 assay (OECD 319B)

	S9 IVIVE Biotransformation				
	k _e (min ⁻¹)	t _{1/2} (min)			
C12	0.03	21.71			
C14	0.01	89.10			
C16	0.01	57.05			
C18	0.01	58.04			
C12	0.01	54.89			
branched					

BIONIC - *In vitro in vivo* extrapolation (IVIVE)

Special consideration for C8 & C10 isethionate constituents

- Ribbenstedt et al reports lowest detectable clearance rate (LL-S9) in OECD 319B for surfactants = 0.15 h⁻¹
- For surfactants without significant clearance but for which homologues did show clearance, estimated reaction rate of :

<u>LL-S9</u> 3

C12 clearance rate = 1.916 h⁻¹ (measured)

C8 & C10 clearance rate = $0.05 h^{-1}$ (estimated)

Ribbenstedt et al. *Environ Sci & Tech* **2022** 56 (10), 6305-6314 DOI: 10.1021/acs.est.1c05543

(11)

BIONIC outputs

Chainlength	Uptake (L/kg/d) & Elimination rate constants (1/d)*				Total Elimination	Tier 2	Tier 1	
	k _u	k _w	k _B	k _F	k _c	half-life (d)	BCF (L/kg)	BCF (L/KG)
C8	0.96	0.00185	0.04	0.0008	0.0016	15.28	21.90	39.81
C10	1.46	0.00193	0.04	0.0008	0.0016	16.78	36.03	53.70
C12	1.46	0.00087	0.24	0.0007	0.0016	2.84	6.76	331.13
C14	21.96	0.00229	0.07	0.0008	0.0016	9.92	315.25	1122.02
C16	49.38	0.00214	0.10	0.0007	0.0016	6.54	467.04	3235.94
C18	106.91	0.00160	0.10	0.0004	0.0016	6.51	1005.14	10568.18
C12 branched	11.05	0.00227	0.11	0.0008	0.0016	6.00	96.47	776.25

 k_{U} = gill uptake, k_{w} = gill elimination, k_{B} = biotransformation, k_{F} = faecal elimination, k_{G} - growth dilution

Final Weight of Evidence approach (submitted under Annex XI, section 1.2 "weight of evidence")

Alkyl isethionates have a low potential for bioaccumulation – further testing is scientifically unjustified and contrary to Article 25 of REACH

Future recommendations

 Standardised, robust and reliable empirical/computational methods for logK_{MW} e.g. OECD Guideline?

3.12.P-Tu247 Coarse-Grained Simulations of Passive Partitioning of Ionic Surfactants into Cell Membranes

Coarse-Grained Molecular Dynamics Simulations of Passive Partitioning of Ionic Surfactants into Cell Membranes

Eoin Kearney¹, Mark A, Miller¹, Elin Barrett², Adriana Bejarano³, Jens Bietz⁴, Kristin Connors⁵, James Dawick⁶, Steven Droge², Marc Geurts⁹, Geoff Hodges², Diederlik, Schowanek⁸ and Sabrina Wilhelm⁹ Department of Chenistry, Durham University, UK, Q) Indues¹ - Salety and Environmental Assaurace Centre (SRA), UK, G) Shell Global Solutions, UK (Q) Charinet Goodate, Deutschland; Gnöh (3) Procter & Indue Brussels Innovations Centre, Belgium (6) Innoget: Limited, UK (7) Environmental Risk Assessment, Wageningen Environmental Research, Netherlands, (8) <u>Nouryon</u>, Chemicals 8.V., Netherlands, (9) BAS² conal Care and Automicon Gnöht, German

Objectives Computational Methods: Molecular Dynamics Simulation cg param is a python script to convert a SMILES code into a coarse-grained structure Environment and Health - Rick Assessment & Management (ERASM) is a joint research ready for simulation in a coarse-grained membrane platform of the European Detergents and Surfactants Industries, The ERASM 'Membrane Water Partitioning of Surfactants' project aims to evaluate the alignment between 3 The script uses two main parts: experimental and 3 computational methods to measure the phospholipid membrane-A graph-based spectral mapping algorithm to break large molecules up into roughl water partition ratio (Kmm) for 12 surfactant structures, covering 4 surfactant types. This four-atom beads while preserving symmetry. poster focuses on computational methods. □ ALOGPS [2] a web-based neural network to generate log Kow values for the fragmen For the underpinning experimental work see poster 3.01P-Th136 (Droge et al.). allowing parameterisation into the Martini force field [3]. Previously our group developed an automatic coarse-graining script to allow rapid setup of membrane-water partitioning simulations using molecular dynamics. Water Membrane Water We aim to derive best practice for use of the Martini coarse-grained force field for Coarse Grain simulation of charged surfactants, and ultimately to benchmark it and other computational me Background Membrane-water partitioning K. (or D...) is a key metric for baseline to

<u>3.01.P-Th136 Assessment of Methods for Determining The</u> <u>Membrane-Water Partition Ratio for Surfactants</u>

Investigate use of BIONIC v3 model across a wider range of surfactants types/classes to understand its applicability and limitations

Thank You

Andrea Gredelj (Unilever) **Geoff Hodges (Unilever) Steve Gutsell (Unilever)** Nicola Haywood (Unilever) **James Dawick (Innospec)** Lauren McAnally (Innospec) **Marc Geurts (Nouryon)**

James Armitage (for answering our questions on BIONIC!)

